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Abstract

Multiphysics solution challenges are legion within the field of nuclear reactor design and analysis. One
major issue concerns the coupling between heat and neutron flow (neutronics) within the reactor assembly.
These phenomena are usually very tightly interdependent, as large amounts of heat are quickly produced
with an increase in fission events within the fuel, which raises the temperature that affects the neutron
cross section of the fuel. Furthermore, there typically is a large diversity of time and spatial scales between
mathematical models of heat and neutronics. Indeed, the different spatial resolution requirements often lead
to the use of very different meshes for the two phenomena. As the equations are coupled, one must take care
in exchanging solution data between them, or significant error can be introduced into the coupled problem.
We propose a novel approach to the discretization of the coupled problem on different meshes based on an
adaptive multimesh higher-order finite element method (hp-FEM), and compare it to popular interpolation
and projection methods. We show that the multimesh hp-FEM method is significantly more accurate than
the interpolation and projection approaches considered in this study.
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1. Introduction

Nuclear reactor modeling and simulation is filled with multiphysics modeling challenges. Inside of a light
water reactor, coolant flows through fuel bundles to remove heat that is used to generate electric power.
This coolant flow can cause vibration and wear of the fuel rods which reduce their life. Further, the coolant
moderates the speed of neutrons in the reactor, which affects the fission efficiency within the fuel, which
changes the amount of heat produced that needs to be removed by the coolant. As such, calculations that
describe the flow of neutrons (neutronics), coolant (fluid mechanics), and heat are coupled within the reactor.
Indeed, the coupling may be tight, which requires that care be taken in the solution of the equation systems
that describe the phenomena. Further, one must be cognizant of numerical error that may be introduced
into the solution of the coupled system, especially if a large number of time steps are needed for the solution.

Generally, each of the phenomena to be modeled inside of the reactor have different spatial discretization
requirements [7]. For example, the coolant mesh requires a refined anisotropic mesh near the fuel to resolve
the turbulent boundary layer to correctly compute the heat flow from the fuel into the coolant, as seen
in the gas-cooled reactor shown in Fig. 1. Likewise, the neutronics equations require resolution to capture
effects at material interfaces and discontinuities. If a single mesh spanning the entire domain and all physics
phenomena were used, it would need to be fine enough at every location to meet the discretization needs of
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the most demanding physics at that location. Further, as the length and time scales of the various physics
components may vary greatly during a transient simulation, this mesh would only be appropriate for a certain
period in time. This leads one to conclude that to capture individual behavior of the solution components
more efficiently, different physics should be discretized on their individual meshes, and an adaptive method
should be used to refine each one based on the needs of the physics it supports.
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Graphite 

Moderator 

Coolant 

Figure 1: Triangular mesh generated on a cross-section of a gas-cooled reactor core. The gas coolant flows between the sections
of the graphite moderator that contain the reactor fuel. Note that graded anisotropic mesh is used where the coolant meets
the surface of the moderator. Substantial refinement is needed in this area as the correct resolution of the coolant flow in the
boundary layer is crucial for the accurate calculation of both the heat flux and forces between the coolant and the moderator.

Traditionally, reactor multiphysics problems have been analyzed by dividing them into several distinct
processes, one for each physical phenomena of interest, and addressing each phenomena independently using
existing monophysics codes. In reality, each component of the solution is often strongly coupled to the others,
necessitating interaction between each of the models (and codes). Traditional coupling paradigms rely on
solving the different physics in a loosely coupled fashion, a technique mathematically described as operator
splitting (OS). This is often implemented in a simple black-box fashion, where the output of one code serves
as input of another code, using various methods of data transfer between the non-matching meshes. Iteration
is used between the codes to converge the overall problem. This approach, while attractive because it employs
existing codes and user experience, may exhibit accuracy and stability issues. The different codes employed
typically use different meshes that necessitate a data exchange at each iteration. These data exchanges
may be quite challenging to perform accurately, as it is often necessary to conduct an expensive geometric
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intersection of the meshes to host the solution of one component on the other’s mesh, and vice versa [12].
For three-dimensional problems on complex reactor geometry, the generation of individual meshes can be
very time consuming and expensive [7]. Secondly, it is often challenging to perform the data transfer so
that conservation of important quantities (mass, momentum, energy) of the solution is achieved, originating
from the fact that coupling terms between the various physics components are dealt with in an inconsistent
fashion. These issues are discussed in some detail in the study by Jiao and Heath [8].

This paper proposes a multimesh hp-FEM method that employs an assembly process to discretize multi-
physics coupled problems in a monolithic way without employing operator splitting or data transfer between
meshes. Each solution component is approximated on a different mesh that is obtained adaptively to best fit
the specific physics requirements. The multimesh hp-FEM has been previously employed to coupled thermo-
mechanical models [6], coupled moisture and heat transfer models [14], and coupled electromagnetics-thermal
models [15].

This study explores the use of adaptive multimesh hp-FEM for computational nuclear engineering prob-
lems. It begins with Section 2 that describes the algorithm for automatic adaptation of hp-meshes with
arbitrary-level hanging nodes and demonstrates advantages of hp-FEM over low-order FEM using an IAEA
benchmark problem and an axisymmetric problem involving the multigroup neutron diffusion equation.
Section 3 describes the multimesh discretization technology and compares it to selected interpolation and
projection data transfer methods. Conclusions are formulated in Section 6.

2. The adaptive higher-order finite element method (hp-FEM)

The hp-FEM is a modern version of the finite element method (FEM) that attains very fast (exponential)
convergence rates by combining optimally finite elements of variable size (h) and polynomial degree (p) [16].
The main principles of exponential convergence are that (a) very smooth, polynomial-like functions are
approximated using large high-order elements and (b) non-analytic (non-polynomial-like) functions such
as singularities are approximated via small low-order ones. The superiority of the hp-FEM over standard
(low-order) FEM has been demonstrated by many independent researchers [1, 2, 3, 10, 9, 16]. Although the
implementation of the hp-FEM is involved, the method is becoming increasingly popular among practitioners.

The hp-FEM differs from standard FEM in a number of aspects, and in particular the complexity of
spatial adaptation due to the large number of ways an element can be refined. One can increase the
polynomial degree of an element without subdividing it in space or one can split the element in space and
distribute the polynomial degrees in the subelements in multiple ways. The number of refinement candidates
considered here is approximately 100 in 2D and several hundred in 3D. An example for cubic triangles and
cubic quadrilaterals is shown in Fig. 2.

Figure 2: Examples of different hp refinement options for a triangular and quadrilateral element. Note that the ability to refine
elements using subdivision and elevate the order of the element leads to many different possibilities. The number shown at the
center of the element is the polynomial degree of the element.

In low-order FEM, the number of refinement candidates is small and thus it is sufficient to guide adap-
tation using element-wise constant error estimators. However, such error estimators do not provide enough
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information to guide hp-adaptation. For this, one needs to have much better information about the shape
of the error function eh,p = u − uh,p in addition to its magnitude. In principle, it is possible to obtain this
information from estimates of higher derivatives of the solution, but this approach is not usually practical.
One way to circumvent this problem is to employ a reference solution; an approximation uref that is at least
one order more accurate than the coarse solution uh,p. The hp-adaptation algorithm is then guided by an
a-posteriori error estimate of the form eh,p = uref−uh,p. More details on automatic hp-adaptation on meshes
with arbitrary level hanging nodes may be found in [13].

2.1. Example: IAEA benchmark EIR-2
This example was chosen due to the excellent work on this problem by Wang and Ragusa ([17], p. 46).

This paper poses a multiple mesh hp-FEM method and demonstrates it on several examples of multigroup
diffusion in one dimension, using a modified version of the 1Dhp90 code [4]. They then present a single mesh,
single group neutron diffusion solution of EIR-2, the Saphir benchmark.

This classical nuclear engineering benchmark [11] describing an external-force-driven configuration with-
out fissile materials present will be used to compare the performance of adaptive hp-FEM and adaptive
h-FEM with linear and quadratic quadrilateral elements1. The domain is a 96× 86 cm rectangle comprising
five regions as illustrated in Fig. 3.

Figure 3: Geometry of IAEA benchmark EIR-2.

Solved is the one-group neutron diffusion equa-
tion

−∇ · (D(x, y)∇φ) + Σa(x, y)φ = Qext(x, y)

for the unknown neutron flux φ(x, y). Zero flux
boundary conditions are assumed on the entire outer
boundary. The values of the diffusion coefficient
D(x, y), absorption cross-section Σa(x, y) and the
source term Qext(x, y) are constant in the subdo-
mains. The total cross-section Σt is 0.60 in Ω1,
0.48 in Ω2, 0.70 in Ω3, 0.85 in Ω4, and 0.90 cm−1

in Ω5. The scattering cross-section Σs is 0.53 in Ω1,
0.20 in Ω2, 0.66 in Ω3, 0.50 in Ω4, and 0.89 cm−1

in Ω5. The absorption cross-section Σa = Σt − Σs.
The diffusion coefficient D(x, y) is calculated from
Σt using the standard relation D = 1/(3Σt). The
source Qext = 1 cm−3t−1 in areas Ω1 and Ω3 and
zero elsewhere.

2.1.1. Results
The results presented below were obtained using Hermes2D2, an open-source modular C++ library for

solving various types of partial differential equations (PDE) as well as multiphysics PDE systems using
adaptive higher-order finite element methods (hp-FEM) and Discontinuous Galerkin methods (hp-DG). It
provides various capabilities for automatic adaptation of hp-meshes, including dynamical meshes for time-
dependent problems, and supports the solution of coupled multiphysics problems in a monolithic way without
operator splitting. The solution φ(x, y) is shown in Fig. 4.

Figures 5 and 6 show the resulting meshes (adaptive h-FEM with linear and quadratic elements and
adaptive hp-FEM, respectively).

1Note: it would be more correct to call these elements bilinear and biquadratic, respectively, but we will stay with the shorter
notation.

2http://hpfem.org/hermes2d/
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Figure 4: Solution Φ(x, y).

Figure 5: Resulting meshes for adaptive h-FEM with linear and quadratic elements.

In Fig. 6, colors are used to distinguish between different polynomial degrees of elements. In the hp-FEM,
edges and element interiors can have different polynomial degrees. Polynomial degrees of edges are depicted
using thin color belts along them. If the interior of an element is split diagonally and contains two colors,
different directional (anisotropic) polynomial degrees are used.

Figure 6: Resulting mesh for adaptive hp-FEM.
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A comparison of the corresponding convergence rates in the H1-norm, both in terms of the discrete problem
size (degrees of freedom, DOF) and CPU time, is shown in Figs. 7 and 8.

Figure 7: Convergence comparison in terms of discrete problem size (DOF) and CPU time.

In these results, adaptive hp-FEM is superior to both adaptive h-FEM with linear elements and adaptive
h-FEM with quadratic elements. One may also see that the theoretically-predicted asymptotic slope −1/2
for h-FEM with linear elements as well as the slope −1 for h-FEM with quadratic elements is attained with
approximately 5000 degrees of freedom.

This section closes by comparing the performance of the adaptive hp-FEM algorithm in Hermes2D with
the performance of the hp-FEM algorithm presented by Wang and Ragusa for the same benchmark problem
(see Fig. 25 in [17]). The code used by Wang and Ragusa is based on an adaptive hp-FEM code developed
by Demkowicz [5]. Both codes use the same type of reference solution and measure the error in the same
norm.

Figure 8: Convergence comparison of adaptive h-FEM with linear elements (left) and adaptive hp-FEM (right) performed using
Hermes2D in comparison with the results of Wang and Ragusa [17].

Figure 8 shows that Hermes2D provides substantially better convergence for both h-FEM (with linear
elements) and hp-FEM. To explore this result, consider the hp-FEM results. Using Wang’s notation, the
theoretical convergence rate of hp-FEM is proportional to exp(γN1/3), where γ < 0. Note that the slope of
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the data is very similar, but the constant of proportionality is smaller with Hermes2D, resulting in a constant
advantage of requiring roughly half the DOFs for the same level of accuracy. The advantage is amplified
when the results for h-FEM are considered. The better performance of Hermes2D may be related to the fact
that it employs a different adaptivity algorithm, both spatially and polynomially anisotropic hp-refinements,
and arbitrary-level hanging nodes.

3. Multimesh hp-FEM

Many of the physical phenomena occurring in nuclear reactors are strongly coupled. The length scales
of the various physics components typically vary significantly in time and space, and the discretization re-
quirements of the components are often quite different. To address these requirements, different meshes are
typically used to host the solution of the different components, and these meshes may evolve independently
over time. This study proposes a novel monolithic approach that preserves the coupling structure of multi-
physics problems from the continuous to the discrete level. The method is based on an adaptive multimesh
hp-FEM discretization technique [14, 6, 15], which preserves the consistent discretization of the problem
even as components of the solution are discretized on different meshes.

In standard hp-FEM, the domain Ω is covered with a finite element mesh T consisting of non-overlapping
convex elements K1,K2, . . . ,KM (typically triangles or quadrilatera) hosting polynomial bases 1 ≤ p1, p2,
. . ., pM . In general, the N solution components exhibit different behavior requiring that they be approx-
imated on different meshes Tn = {Kn

1 ,K
n
2 , . . . ,K

n
M}, n = 1, . . . , N . The elements in these meshes possess

nonuniform polynomial degrees p(Kn
i ) = pn

i . In order to limit the algorithm to a reasonable level of com-
plexity, this approach establishes a geometric relationship between the meshes. This relationship begins with
the definition of a coarse master mesh Tm, that serves as the common basis of refinement for the coupled
solution. Given this basis Tm, a set of refinement operations are applied to develop an appropriate mesh Tn

for the nth solution component of interest. The refinement procedure applied for each Tn may be mutually
independent for each component.

Use of the master mesh as a common basis of refinement significantly simplifies the approach, as it
eliminates the need to perform geometric intersection operations to relate the solution between meshes.
Further, the hierarchical relationship between the discrete spaces provides an effective mechanism for the
representation and assembly of the finite element problem. In this case, the stiffness matrix is assembled on
a virtual union mesh Tu, which is the geometrical union of the meshes Tn. To visualize this union of mesh
representations, imagine printing the meshes on transparencies and overlaying them one above the other, as
illustrated in Figure 3).

Figure 9: Diagram A) shows the master mesh Tm that is the common basis of refinement of the multiple multiphysics meshes.
B) through D) are meshes T1, T2, T3 obtained by refinement of the master mesh to meet the requirements of physics packages
hosted upon them. The multiphysics problem is actually assembled on the union mesh Tu, that is the intersection of B) through
D).

The union mesh Tu is not explicitly constructed; its virtual elements are traversed by the element-by-
element assembling procedure employed in standard hp-FEM [16]. This approach does not incur interpolation
or projection error, as information is not actually transferred between the meshes; each element on each mesh
is used to integrate the solution that the element hosts. In other words, all integrals in the weak formulation
of each coupled problem are evaluated exactly (up to the error in numerical quadrature).
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4. Comparison to interpolation- and projection-based intermesh data transfer methods

In this section we use a problem with known exact solution to compare the multimesh discretization
approach with two standard techniques to transfer solution data between different meshes: linear interpola-
tion of vertex values and L2 projection. We will solve a heat transfer equation with a spatially-dependent
thermal conductivity k = k(x, y),

−∇ · (k ∇u) = f in Ω = (0.01, 1.0)2, (1)
u = uD on ∂Ω.

The weak problem is to find u ∈ H1(Ω) satisfying u = uD on ∂Ω such that∫
Ω

k ∇u · ∇v dxdy =
∫

Ω

f v dxdy, for all v ∈ H1
0 (Ω). (2)

With

k(x, y) = x3 + y3, f(x, y) = 2− 2
(
y3

x3
+
x3

y3

)
and uD(x, y) =

1
x

+
1
y
,

the exact solution is given by

u(x, y) =
1
x

+
1
y
.

For comparison purposes, two different meshes TA and TB were generated as follows: A piecewise-linear
mesh TA is obtained by solving equation (2) using adaptive h-FEM. This mesh contains 189 DOF and it is
virtually optimal to represent the exact solution u (see left part of Fig. 10). Another mesh TB is a uniform
piecewise-linear 256× 256 subdivision of the computational domain containing 65025 DOF, as shown in the
right part of Fig. 10. The thermal conductivity k(x, y) is represented on the mesh TB via its continuous,
piecewise-linear vertex interpolant kh(x, y).

Figure 10: Left: non-uniform piecewise-linear mesh TA with 189 DOF where equation (2) is solved. Right: uniform piecewise-
linear mesh TB with 65025 DOF where the thermal conductivity k(x, y) is represented via its continuous, piecewise-linear vertex
interpolant kh(x, y).

In the following we solve equation (2) in four different ways and compare the results to the exact solution u:
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(1) Transfering kh(x, y) from TB to TA via interpolation and solving on TA

Let us begin with linear interpolation of vertex values, which probably is the most widely used method
for transferring solution data between different meshes. The piecewise-linear function kh(x, y) defined on the
mesh TB is approximated on the mesh TA by means of a continuous function k(1)

h (x, y) that matches kh(x, y)
exactly at all grid vertices of the mesh TA and is bilinear in each element of TA.

In other words, k(1)
h =

∑
i civi(x, y) where vi ∈ V A

h are the vertex basis functions on the mesh TA, and
the coefficients ci are the values of the function k(x, y) at the corresponding grid points of TA. (For higher-
order hierarchic finite elements, the natural extension of linear interpolation is the so-called projection-based
interpolation [16].)

The corresponding approximation u
(1)
h , computed on the mesh TA using linear finite elements and the

approximate thermal conductivity k(1)
h , is shown in part (a) of Fig. 11. The approximation error e(1)

h (x, y) =
u(x, y)− u(1)

h (x, y) is shown in part (a) of Fig. 12.

(2) Transfering kh(x, y) from TB to TA via L2-projection and solving on TA

Let us denote by V A
h the finite element subspace ofH1(Ω) on the piecewise-linear mesh TA. The projection

problem ||k(2)
h − kh||L2 → 0 can be rewritten in weak sense as (k(2)

h − kh, vi)L2 = 0 or

(k(2)
h , vi)L2 = (kh, vi)L2 (3)

for all basis functions vi of the space V A
h . The unknown projection k

(2)
h is written as a linear combination

k
(2)
h =

N∑
j=1

yjvj

where yj are unknown coefficients. Substituting this sum into the variational identity (3), one obtains a
system of linear algebraic equations. The mass matrix integrals of the form

∫
Ω
vj vi dxdy are computed over

elements of the mesh TA. Following the common refinement algorithm proposed by [8], the right-hand side
integrals

∫
Ω
kh vi dxdy are computed using elements of the geometrical union of the meshes TA and TB (that

is TB in our case). The corresponding piecewise-linear approximation u
(2)
h on the mesh TA is shown in part

(b) of Fig. 11. The approximation error e(2)
h (x, y) = u(x, y)− u(2)

h (x, y) is shown in part (b) of Fig. 12.

(3) Using the multimesh discretization method (no data transfer between meshes)
Next we compute a piecewise-linear approximation u

(3)
h using the multimesh discretization method that

was described in Section 3. Note that in this case, the union mesh of the meshes TA and TB is TB . The
approximation is shown in part (c) of of Fig. 11, and the approximation error e(3)

h (x, y) = u(x, y)−u(3)
h (x, y)

is shown in part (c) of Fig. 12.

(4) Solving on TA with the exact thermal conductivity k(x, y)
For comparison purposes we also compute a piecewise-linear approximation u(4)

h on the mesh TA using the
original function k(x, y). This is the best finite element approximation one can obtain on the mesh TA. The re-
sult is shown in part (d) of Fig. 11 and the corresponding approximation error e(4)

h (x, y) = u(x, y)−u(4)
h (x, y)

is shown in part (d) of Fig. 12.

The results of the four computations are summarized in Table 1 which shows H1-norms of the approximation
errors on the mesh TA calculated with respect to the exact solution u. Approaches (1) and (2) resulted in a
large error in the solution. In particular, notice the extreme error in case (2). As discussed in [8], one must
typically use a higher order integration on the target mesh. Thus, a second calculation was performed using
quadratic elements on TA to yield the third row of Table 1. Note that the multimesh discretization provides
slightly better results than the approximation calculated using the exact data k(x, y) on the mesh TA. This
is due to the fact that the multimesh method integrates over elements of the union mesh (in this case the
mesh TB) which is much finer than the mesh TA used for assembling in case (4).
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Table 1: Comparison of relative H1-norm errors for the four methods described above.

Method Relative H1 error

Interpolation of k(1)
h on mesh TA 17.766%

L2-projection of k(1)
h on mesh TA (lin.) 31.808%

L2-projection of k(1)
h on mesh TA (quadr.) 6.734%

Multimesh discretization method 6.727%
Using exact data k(x, y) on mesh TA 6.729%

(a) Approximation u
(1)
h obtained using the interpolant

k
(1)
h on the mesh TA

(b) Approximation u
(2)
h obtained using the projection

k
(2)
h on the mesh TA

(c) Approximation u
(3)
h obtained using the multimesh

discretization method
(d) Approximation u

(4)
h obtained using the exact func-

tion k(x, y) on the mesh TA

Figure 11: Finite element solutions to (2). Note that the two methods that transfer the thermal conductivity between the
meshes TB and TA (a and b) possess significant error close to the origin, while the multimesh discretization yields results that
are quite close to the exact solution.
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(a) Error e
(1)
h due to vertex interpolation of kh(x, y) on

the mesh TA

(b) Error e
(2)
h due to L2-projection of kh(x, y) on the

mesh TA

(c) Error e
(3)
h obtained using the multimesh discretiza-

tion method
(d) Error e

(4)
h obtained using k(x, y) on the mesh TA

Figure 12: Approximation errors on the mesh TA calculated with respect to the exact solution u. Note that the scale of the
error magnitude is significantly different between the plots.

5. Automatic adaptivity in multimesh hp-FEM

Automatic adaptivity in multimesh hp-FEM [6] is much more involved than standard adaptive hp-FEM
[5, 16] where only one mesh is used. In the multimesh case, one needs to define a global error norm that
includes error contributions from all meshes considered as a group, and refine the meshes for each physical
model to minimize that global error norm. As discussed in [17], Fig. 4, one may take each physical model
in turn and adapt it (using the standard hp-FEM approach) until the error for that model is below some
tolerance. At this point, one moves to the next model and repeats the process. Unfortunately, refinement
on each mesh may effect the refinement needed on the others at particular spatial locations. Figure 5 in
[17] presents a second algorithm that selects elements to be refined based on the maximum error across all
models and across all elements. While this approach requires that the error magnitudes be normalized across
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all physical models, it is employed for these results. Thus, in the multimesh hp-FEM presented here, every
element competes directly with all elements on all meshes in the system.

5.1. Example: Multigroup neutron diffusion
This section compares the performance of adaptive hp-FEM and h-FEM by solving a multigroup neutron

diffusion problem on a two dimensional multimesh. The reactor core shown in Fig. 13 is modeled in two
dimensions using cylindrical coordinates. The computational domain is divided into 5 zones; center, outer,
upper, and lower reflector regions, and a fissile core. Detailed geometry within each zone is homogenized
into the zone for simplification.

Figure 13: Diagram of the simplified prismatic VHTR core model.

The reactor neutronics is given by the following eigenproblem,

−∇ ·Dg∇φg + ΣRgφg −
∑
g′ 6=g

Σg′→g
s φg′ =

χg

keff

∑
g′

νg′Σfg′φg′ , g = 1, . . . , 4, (4)

with boundary conditions

∂φg

∂n
= 0 on ΓSYM, and Dg

∂φg

∂n
= −1

2
φg on ΓV . (5)

Here, φg is the neutron flux, Dg is the diffusion coefficient, ΣRg = Σag +Σg→g+1
s is the removal cross section,

Σfg is the fission cross section, ΣS is the scattering cross section, ν is the average number of neutrons born
per fission event, and the subscript g denotes the group index in the multigroup neutron diffusion equation.
Lastly, keff is the eigenvalue.

This eigenproblem is numerically solved using the power method (or power iteration), as outlined by the
following algorithm:

1. Make an initial estimate of φ(0)
g and k(0)
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2. For n = 1, 2, . . .
(a) solve for φ(n)

g using

−∇ ·Dg∇φ(n)
g + ΣRgφ

(n)
g −

∑
g′ 6=g

Σg′→g
s φ

(n)
g′ =

χg

k(n−1)

∑
g′

νg′Σfg′φ
(n−1)
g′ (6)

(b) solve for k(n) using

k(n) = k(n−1)

∫
ΩC

4∑
g=1

νgΣfgφ
(n)
g

∫
ΩC

4∑
g=1

νgΣfgφ
(n−1)
g

(7)

3. Finally, stop iterating when ∣∣∣∣k(n) − k(n−1)

k(n)

∣∣∣∣ < ε (8)

5.1.1. Results
The calculations that follow are using the material properties shown in Tab. 2:

Table 2: Material properties for the geometry shown in Fig. 13.

Active core properties Reflector properties
1 2 3 4

Dg( m) 0.0235 0.00121 0.0119 0.0116
ΣRg( m−1) 0.00977 0.162 0.156 0.535
Σfg( m−1) 0.00395 0.0262 0.0718 0.346
νg 2.49 2.43 2.42 2.42
χg 0.9675 0.03250 0.0 0.0
Σ1→2

s ( m−1) 1.23 0 0 0
Σ2→3

s ( m−1) 0 0.367 0 0
Σ3→4

s ( m−1) 0 0 2.28 0

1 2 3 4
Dg( m) 0.0164 0.0085 0.00832 0.00821
ΣRg( m−1) 0.00139 0.000218 0.00197 0.0106
Σfg( m−1) 0 0 0 0
νg 0 0 0 0
χg 0 0 0 0
Σ1→2

s ( m−1) 1.77 0 0 0
Σ2→3

s ( m−1) 0 0.533 0 0
Σ3→4

s ( m−1) 0 0 3.31 0

The problem was solved using both hp-adaptation and standard h-adaptation on low-order elements
(with bilinear and biquadratic quadrilateral elements). The relative error between the coarse mesh solution
φg and the reference solution φ̃g was calculated using

E2
rel =

∑
g

||φg − φ̃g||2H1∑
g

||φ̃g||2H1

.

Figure 14 shows the neutron flux for each of the four energy groups (eigenvectors), where flux intensity
is shown in color (blue is the lowest flux and red is the highest). The eigenvalue in this problem was
keff = 1.14077.

Using hp adaptation, a relative error of 0.0164% was achieved using 27903 degrees of freedom (DOF).
The h refined results provided a relative error of 3.87% using 30112 DOF.

Figures 15 and 16 show four optimal hp-meshes and corresponding h-meshes, respectively. Figure 15
shows hp adapted solutions to each group of the four group problem. It is clear from this figure that the
coupled problem is being solved with a mesh of a different refinement and elements of different order in each
group. Note that the solutions for groups 1–3 shown in Fig. 14 are similar, as are their corresponding hp
meshes. However, with detailed examination, both the solutions and meshes differ between groups. Note
that both the solution and mesh for group 4 differs significantly from the others.
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(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Figure 14: Neutron flux for the four group neutron diffusion calculation on the VHTR geometry. Color indicates the intensity
of the flux in each group.

(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Figure 15: hp-meshes for that correspond to the above neutron flux results. Colors have the same meaning as in Fig. 6. Note
that different levels of subdivision and different polynomial orders are used for each energy group. This solution contains 27903
DOF, and has a relative error of 0.0164%.

Figure 17 compares convergence curves on this problem using hp-FEM and standard FEM using both
bilinear and biquadratic elements. It is apparent that in regions where the solutions are smooth, the algorithm
tends to use larger elements with higher polynomial degree. In areas near singularities or geometric corners,
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(a) Group 1 (b) Group 2 (c) Group 3 (d) Group 4

Figure 16: h-meshes (linear elements, p = 1) for the four group neutron flux problem. Again, each group uses a different
refinement. Solution contains 30112 DOF, and has a relative error of 3.87%.

Figure 17: Comparison of the spatial convergence of hp- vs. h-adaptation on the multigroup multimesh neutron diffusion
problem shown in Fig. 13. Three curves are shown, h results with both linear (p = 1) and quadratic (p = 2) polynomial order,
and hp. Note the significant accuracy advantage of the hp method for a given number of DOFs.
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smaller elements with lower polynomial degree yield the best results. This is in good correspondence with
the theory of hp-FEM. On the other hand, h-adaptation can refine only spatially, which results in more
degrees of freedom and a larger relative error as illustrated in Fig. 17.

Figure 18 shows two solutions of the multigroup problem, the first using a single mesh for each of the
physics models, and the second using the multimesh approach to solve each group on its own mesh (Figs. 14
and 15). It is apparent that more degrees of freedom are needed to solve the four group problem using a
single mesh, to obtain comparable accuracy. On this problem, the savings in total DOF obtained by using a
multiple mesh strategy is not striking. Future work includes more study of the error metric used to adapt each
mesh in turn, as a more discriminating metric may yield a greater performance difference when compared
to a single mesh approach. Secondly, while there is some diversity in the spatial resolution requirements of
the physics solutions hosted on each mesh, it is fairly small across the groups on this multigroup problem.
A much greater diversity is expected between multigroup neutronics and models for fluid (coolant) flow,
especially in areas of the turbulent boundary layer of the fluids calculation.

Figure 18: Comparison of hp-FEM spatial convergence for solving each group on a separate mesh using the multimesh approach,
vs. using the same mesh for all the groups.

6. Conclusion

This paper began by introducing some of the multiphysics challenges within the field of computational
nuclear engineering and motivating the need for integration methods that handle a wide diversity of spatial
resolution needs across multiphysics models. The hp-FEM method was introduced, and solutions were
presented that compared the method vs. h-FEM on the IAEA benchmark EIR-2.

The study then considered the use of hp-FEM as a methodology to spatially integrate and couple mul-
tiphysics problems using multiple meshes. Here, a hierarchy of meshes were used to define the method to
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simplify the implementation and to eliminate the challenges of performing geometric intersection operations
between topologically-distinct meshes. The proposed approach was compared to commonly used techniques
for data transfers between meshes, on a problem with a known solution. It was shown that by using the
proposed multimesh assembly process no additional error arises due to the use of distinct meshes in the
problem considered.

The final portion of this study explored the adaptive, higher order finite element method (hp-FEM)
and potential advantages of the approach over typical low-order FEM for the four group neutron diffusion
equations. In this case, a multiple mesh problem was developed that hosted the solution for each group on a
independent (but hierarchically related) mesh. An example problem was considered that exhibited an error
of 3.87% using 30112 DOF, employing h adaptation and linear elements, but using a different mesh for each
group. The second example used the proposed hp method, and produced an error of 0.0164% using 27903
DOF, again with a separate mesh per group. These results may be interpreted two ways; for a given level of
accuracy the hp method will require considerable fewer DOF, or for a similar number of DOF, the hp method
will provide over 200 times the accuracy (on this problem). Finally, a multimesh vs. single mesh calculation
was compared. Here, the reduction in the number of DOFs needed for the same level was limited, likely in
part due to the “closeness” of the multigroup solutions on each mesh. Future work includes study of this
approach on problems with greater diversity such as Navier-Stokes coupled to neutronics, three dimensional
problems, and more sophisticated error indicators and refinement strategies to refine each individual mesh
separately.
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