

TABLE OF CONTENTS

UNIT 1 SECTIONS 1-5 ... 2

UNIT 2 SECTIONS 6-10 ... 7

UNIT 3 SECTIONS 11-15 ... 12

UNIT 4 SECTIONS 16-20 ... 17

UNIT 5 SECTIONS 21-25 ... 22

Copyright © 2016 NCLab Inc.

KAREL JR ANSWER KEYS FOR STUDENT JOURNALS
REVISED OCTOBER 6, 2016

2

UNIT 1 SECTIONS 1-5

SECTION 1

MANUAL
MODE,
BASIC
FEATURES

PAGE 1 – 5

KEYWORD
(COMMAND)

KEYBOARD
KEY

SCREEN
BUTTON

FUNCTION

go Up arrow
Move Karel one step forward

right
Right arrow Karel turns to his right

left Left arrow Karel turns to his left

Get Shift key Karel picks up the object on the
square he occupies.

put Control key
Karel puts an object into a
container on the square he
occupies.

FACTOR WHAT IT MEASURES WHY IT IS IMPORTANT

Number of
operations

 Everything Karel does is an
operation: go, left, right, get,
put.

More operations means a longer program. A
program with a lot of operations is also difficult
to understand and troubleshoot.

Number of steps
The number of squares Karel
travels to get to his destination

Planning the shortest path will make the
program more efficient and save time.

Amount of time The run time of the program

Programs that take a long time use more
computer resources such as processing and
memory. They tie up network connections.
They may not work well with other programs
that need a fast response time. They are boring
to the user who has to wait.

SECTION 1

PAGE 1 - 6

Many of these levels restricted the number of steps you could take. Did you plan ahead, or just keep
trying until you were successful? How can you plan the number of steps to stay less than or equal to the
maximum allowed?

Answers will vary – reflect student experience. Planning examples – read instructions, count squares,
visualize the path before running the program, discuss alternatives with a partner

Discuss at least two different pathways through the maze to complete Level 1.6 “Fire!” Is there any
advantage to using one rather than the other?

Answers will vary. Sample: After picking up the four drums, Karel could continue
around the west side of the barrier, or turn back and go around the east side.
Either way is 44 operations, so it makes no difference. (unless a student can
prove fewer operations with their method).

What pattern was needed to complete Level 1.7 “Flowers” within 13 steps? Would you have chosen this
pattern without the fences to guide you?

Answers will vary (in the past, the game did not have the
fences. Students rarely used this pattern first and ended
up using too many steps.)

3

SECTION 2

BASIC
COMMANDS
AND
SYNTAX

PAGE 1 - 9

INCORRECT CODE CORRECTED WHAT ERRORS WERE MADE?

go go get

go

right

put

go

go

get

go

right

put

More than one command was written on the
same line

go

 get

go

 left

go

go

go

get

go

left

go

go

Indentations have meaning in Karel. A new
command line should not be indented.

Write the code needed for Karel to move forward two steps, turn right, move forward one step, pick up an
object, turn left, move forward three steps, put the object into a container, turn right, move two steps.
What will this look like when you run the program? How many operations are there? _13_____ How
many steps did Karel take? ___8_____

Program
go

go

right

go

get

left

go

go

go

put

right

go

go

 x x

 g x x p

 x

 x

SECTION 2
PAGE 1 - 10

What happens when you give a robot a command that is not correct? Give an example.

 You may get an error message when you try to run the program.
 Example: misspell go, get this error message: “gv is not a known command. Line 2: gv”

 Karel might crash into a wall. Example: writing right instead of left.

 You may get a message at the end of the program such as “Not All Objects Collected” Example: not
including a get command.

Think of a simple procedure you do every day, like putting your books away, eating lunch, getting dressed.
How could you write code for such a procedure using go, left, right, get, put?

Answers will vary. Student should describe what the code is doing.

In Karel, what are SHIFT-ENTER and the eraser button used for?

Shift-Enter creates a space to enter a line of code above the line you are on. The Eraser button (note:
this has been changed to the two green arrows which restore the original default code – will be revised
in the next edition) erases all the code.

4

SECTION 3

REPEAT
LOOPS

PAGE 1 - 13

Let’s review vocabulary. Match each term to the correct definition.

TERM/DEFINITION

1. h

2. g

3. b

4. d

5. f

6. c

7. e

8. a

Looking for patterns in programs takes study and planning. What repeated patterns do you see in this
picture?

 Answers will vary:

Repeated patterns include the skewers themselves;
the different combinations of meat and vegetables;
the way the grill is made.

SECTION 3
PAGE 1 - 14

What syntax do you use when writing repeat loops?

Indent the body of the loop by two spaces.

Cooking often requires repeated procedures: putting cookie dough in rows on a baking sheet is one
example. Can you think of others?

Answers will vary.

go vs. repeat 2 Both use two lines. When would a repeat 2 loop be useful?

go go

The loop is useful when the set of commands in the body takes more than one line.

5

SECTION 4

REPEAT
LOOPS
EMBEDDED
IN
PROGRAMS

PAGE 1 - 17

Compare these two examples with different indentations. Draw Karel’s path for each one.

Program 1

repeat 3

 go

 left

 go

 right

go

Program 2

repeat 3

 go

 left

 go

 right

 go

 x x

 x x

 x x

 x

 x x x

 x x x

 x x x

 x

Write a general rule for indentation with loops. Explain how to start the loop, and how to end it.

Sample answer: The repeat command is written as repeat x, where x is the number of times the
commands will be repeated. The body of commands to be repeated is indented by 2 spaces for each
line of command. The body ends when the indentation stops.

SECTION 4
PAGE 1 - 18

In 4.7, there were several possible solutions. The program can be written in 17, 16, or 15 lines.

Compare the solutions (discuss with a friend).

See solution manual for examples of 19, 16, and 15 line solutions. Answers will vary.

What is being done to reduce the number of lines?

More repeat loops reduce the number of lines.

Is the program more effective when it is shorter?

Answers will vary: Has 3 more operations; run time is about the same. So the speed is about the same.
However, programs with repeat loops are easier to understand and edit.

6

SECTION 5

MULTIPLE
LOOPS AND
NESTED
LOOPS

PAGE 1 - 21

Mark the indentation errors in the following programs.

Program 1
Separate command

followed by a
nested loop

Program 2
Nested loop

followed by two
separate commands

Program 3
Separate loops

Program 4
First, nested loops

Then, a separate loop

go

repeat 3

 go

 repeat 4

 go

 left

 go

 get

 right

 go

repeat 2

go

left

 repeat 6

go

 right

 go

repeat 4

 go

 left

 go

 right

 go

 repeat 5

 go

 get

repeat 6

 go

left

 repeat 4

 go

 get

 repeat 10

go

In Program 1, line 3 needs 1 more indent space. Lines 8, 9, and 10 should be indented 2 spaces
from the nested repeat 4.

In Program 2, Lines 2 and 3 should be indented 2 more spaces. Lines 5 should be indented 2
spaces right of repeat 6. Line 6 and 7 should not be indented.

In Program 3, repeat 5 should not be indented.

In Program 4, line 3 should be indented 2 spaces. Lines 5 and 6 should be indented 2 more
spaces. Line 7 should not be indented. Line 8 should be indented 2 spaces.

Nested patterns occur in nature, art, engineering; anything that is made up of
patterns within patterns. Describe the nested loops in this picture.

Sample Answer:

Each large black mark on the dial is followed by 4 small marks. Those small
marks could be a repeat loop of 4 within the larger repeat loop of 12 large
black marks.

SECTION 5

PAGE 1 - 22

How are multiplication and division similar to nested loops?

Answers will vary. The outer loops are a multiple of what is being created in the inner loop. Example:
packing 12 crayons into a box (inner loop), then putting 12 boxes of crayons in a carton (outer loop).

A gardener plants a row of corn. She is planning 10 plants for the row. She puts three seeds in each
hole, hoping that at least one will germinate and grow into a plant (in real life, these would be spaced
closely, but for now, take a step each time you “plant” a seed). She spaces the holes apart by two steps.
Use go, left, right, put to write a program to do this task.

repeat 10

 repeat 3

 go

 put

 go

 go

(students may include a couple of go commands to put spaces between the groups of seeds)

left and right are not needed for one row. They would be used to turn and move to the next row.

7

UNIT 2 SECTIONS 6-10

SECTION 6

IF
CONDITIONS

PAGE 2 - 5

Time for a vocabulary check. Match each term to the correct definition.

TERM/DEFINITION

1. c

2. e

3. f

4. b

5. a

6. d

SENSOR TYPE
ACTION USUALLY

TAKEN

IS KAREL IN THE
SQUARE OR IN FRONT

OF THE SQUARE WHEN
HE DETECTS THE

SENSOR?

EXAMPLES

Object get In the square Picks up a pumpkin

Container put In the square
Puts the pumpkin in a
basket

Obstacle
Avoid by moving
around or along the
obstacle

In front of the sensor
Detects a wall. Turns
to the left.

SECTION 6

PAGE 2 - 6

For a sensor word to be blue-colored it must meet two conditions. What are they?

The sensor word must exist in the Karel library. It must be spelled correctly.

Give two examples of how conditions are used in Section 6.

Answers may vary. Sample: 6.5 If Karel senses a poisonous plant, then he goes around it to the right.

Compare conditional loops to repeat loops. When would you choose one over the other?

Repeat loops are used when a fixed definite number of repetitions is needed and known in advance.
Conditional loops are used when Karel will only execute a set of operations under certain conditions,
and we do not know whether those conditions exist.

8

SECTION 7

IF/ELSE
CONDTIONS;
NORTH
SENSOR

PAGE 2 - 9

Think of if/else as a set of two choices depending on the presence or absence of a sensor. Think of
studying for a math test. If you don’t understand a type of problem, you will practice it; if you do
understand it, you will choose a different type of problem to work on.

Describe two other real life conditions that branch into two choices:

Answers will vary. Else branches require a different set of actions based on the absence of the if
condition.

The North Star has been used in navigation for thousands of years. By knowing where North is, we can
angle off to any other direction. Karel uses north in a similar manner, but he is only allowed to turn

90 degrees at a time by using left or right. Fill in the table to describe how to end up with East,
South, and West by turning right or left. Karel starts out by facing North.

DIRECTION WE WANT
KAREL TO FACE

NUMBER OF LEFT
TURNS NEEDED

NUMBER OF RIGHT
TURNS NEEDED

East 3 1

South 2 2

West 1 3

SECTION 7

PAGE 2 - 10

Describe two if/else conditions from the Section 7 levels. What are the conditions and what are the
outcomes? Pick two that you might use yourself when designing a maze.

Answers will vary. Sample: 7.5: Karel needs to place a spider on all the marks. Some marks are in his
path, and some marks are to the left. If there is a mark, he places a spider on it. Else, he goes left,
places the spider on that mark, turns around, goes back to the path, turns left and moves forward.

The games are starting to combine different kinds of loops. What would you use to solve the following
situations?

Karel follows a wall 14 units long, checking for
snakes. When he finds one, he goes around it. If
he doesn’t, he moves forward.

Note: Another solution would be to go to the
right of the snake. In that case, all the right and
left turns are opposite. Some students might
take this a step further and build in a nested if
condition to check for a snake in the square after
the first snake, before returning to the main
path.

repeat 14

 if snake

 left

 go

 right

 go

 go

 right

 go

 left

 else

 go

Karel is traveling east. He can’t move forward
unless he is facing east.

repeat 3

 if not north

 left

right

Karel must pick up twenty computer chips. Each
time he picks one up, he turns left and goes one
step. Otherwise, he goes forward one step.

repeat 11
 if chip
 get

 left

 go
 else
 go

9

SECTION 8

EMPTY
SENSOR;

AND, NOT, OR
KEYWORDS

PAGE 2 - 13

Check your understanding of how these keywords operate by completing the table.

LOGICAL
OPERATOR
KEYWORD

DESCRIBE THE CONDITION
EXAMPLE

answers will vary

not condition must not be met
if not empty

 put

and
both or all of the conditions must be
met

if cart and (not

empty)

 put

or

means that one (or a set of conditions
within parentheses) of two or more
conditions must be met

if nugget or jewel

 get

empty refers to Karel’s pocket, which may contain different amounts of an object. A common real-life
problem is, of course, how much money you have in your wallet, or on your bank card, when you go
shopping. Think of two other examples of checking a “not empty” condition.

ITEMS IN THE “POCKET”
WHAT HAPPENS IF THE POCKET IS NOT EMPTY?

YOU CAN ALSO WRITE AN “ELSE” FOR WHEN IT IS
EMPTY.

 Answers will vary.

Example:

Sports drinks in beverage fridge

If the fridge is not empty, you can get a sports drink

Else, you need to go to the store to buy more sports drinks.

SECTION 8

PAGE 2 - 14

What logical operator or operators would you use for the following conditions? Write out an expression
using the operators and parentheses if needed.

Mix chemical A and B together but do not mix
them with C. The mixture will explode if you do.

Sample Answers (accept all reasonable answers)

A and B not C

(A and B) not C

I can work Wednesday or Thursday next week
and Tuesday the following week.

Wednext or Thurnext and Tuesfollow

(Wed or Thurs)Next and (Tues)Follow

I will not eat pizza with onions or anchovies. Not pizza (onions or anchovies)

Make up your own example using logical
operators.

Answers will vary.

10

SECTION 9

WHILE LOOP

PAGE 2 - 17

Place these statements in the correct part of the Venn diagram.

if

Both if and while

while

SECTION 9

PAGE 2 - 18
while not home is a commonly used while loop. Explain what that means.

Sample: Karel will continue his operations until he senses the home sensor. Then he will stop and end
the program.

Another common loop is while wall or the opposite: while not wall. What were these loops
used for in this Section? Note: This question will be corrected in the next revision. While wall and
while not wall are not used in this section. The keyword acid is used instead of wall, so acid could be
substituted. While not acid is never used.)

Sample: In Section 9.5 Karel continued along the wall of acid (while acid) until he no longer sensed the
acid. Then he went on through.

Your SUPER INSPECTOR 9000 is checking a fence for damage. Each board must be examined carefully.
The robot won’t stop until the whole fence has been checked. What kinds of conditions will you use to

program the robot? Will you use if, while, or both?

The fence is a wall, so the robot could use a while wall or while fence type command. If could be used
to note which sections are damaged.

Can be paired with an

else condition

Will continue as long as the

condition being sensed is present

Is a loop

The number of

repetitions is not known

in advance.

Use sensors to

specify conditions

Will sense each square

as a separate test

11

SECTION 10

WHILE LOOPS
AND
CONDITIONS

PAGE 2 - 21

There are certain patterns in mazes that are require a specific set of commands. Review 10.1, 10.2, and
10.4 and write down the commands needed to navigate spirals, steps, and the perimeter of a square.

SPIRAL
STEPS

 (STAIRCASES AND
SHELVES)

PERIMETER OF A SQUARE

while not home

 go

 if wall

 left

 if key

 get

This is a spiral because Karel
always turns left when he
senses a wall. He checks every
square.

while wall
 if key
 get
 left
 go

 right
 go

This is a set of steps: Karel
zigzags.

If Karel is filling shelves, he will
need to turn around - for
example: left, go, right, right,
go, left, go

repeat 4
 while not wall
 go
 if key
 get

 left

The perimeter of the square
or rectangle includes 4 sides,
so we use a repeat 4 loop.
Within the loop, Karel will
keep moving forward until he
reaches the wall and turns
left.

However, “real world” mazes aren’t so regular. Write down the code explained in 10.6, which will work
for navigating any maze.

IRREGULAR AND RANDOM MAZES

Code from 10.6

while not home

 if wall

 left

 if wall

 right

 right

 if key

 get

 go

This code will work for any maze because Karel checks for walls in any position. Example: Karel
turns left. He senses another wall, he turns around and then goes forward.

SECTION 10

PAGE 2 - 22

Home robots: could they really do our chores? Pick one of these and come up with a plan. Don’t try to
write the code (it would be very long!), but try to think of tasks that would lend themselves to repeat
loops, if conditions, and while loops. Answers may vary. Sample:

Do the laundry

Repeat loop for the washer, dryer, fold, put away pattern. If conditions –
example if whites, add bleach. While conditions: while laundry, do not
take a shower.

Clean the bedroom

Shop for groceries

Pull weeds in the garden

Recycle

12

UNIT 3 SECTIONS 11-15

SECTION 11

USING THE
KEYWORD DEF

PAGE 3 - 5

There are key advantages to using defined commands. Find some examples of the following
advantages. These may be from the levels in this Section, or your own experience.

The program requires less lines of code, once the definition has been created.

Answers will vary. Example: 11.2 uses only 46 lines of code compared to 11.1 which uses 108 lines,
because the defined command star takes care of the pattern Karel uses to collect chips from each star.
Students can also use the example of the waterbox defined command in 11.5/11.6.

It is easier to fix problems within the defined command, rather than searching through the program
and fixing several lines.

Answers will vary. Example: Students may refer to the way they solved 11.5 waterbox, before
implementing it in 11.6 as a defined command. Or 11.7: each row and turn direction is a defined
command. It is easy to fix errors in one of these components rather than finding and fixing the
individual lines of code repeated several times in a program.

Write an example of the def keyword in action. What does it do? Make notes on the syntax and logic.

Code Syntax – what should I remember to do
when using def?

What does the defined
command do in the program?

Examples will vary

def scoot

 right

 go

 go

 left

Defined command itself:

Written before main program.

First line is not indented. Lines in the body
of the defined command are indented similar
to repeat loops.

Calling command in main program: just write
the defined command name scoot as part
of the program. It can be included as a single
line command, or part of a loop.

This command moves Karel
from one star to the next.

SECTION 11

PAGE 3 - 6

You are starting to use simple blocks of programming to build complex routines. Explain how this
process works in either 11.3/11.4 (using def star), or 11.5/11.6 (using def waterbox).

Sample: If a program includes repeated sets of commands, those sets of commands can be written as
define commands which are used as needed. star is used every time Karel comes up to a star-

shaped group of chips, which are all the same pattern. Waterbox is used every time Karel comes
up to a box containing water bottles. The boxes are all the same size.

11.7 uses three defined commands to create repeated actions. Notice how comments are used as
headings and explanations for each defined command, and for the main program. Practice writing a
comment and a defined command. Remember to start the comment with the # symbol to show that it
is just a text string and not part of the program itself.

Answers will vary. Example of one defined command used in program:
#Defined command to climb one step

def climb

 left

 go

 right

 go

#Climb 10 steps

repeat 10

 climb

13

SECTION 12

USING
DEFINED
COMMANDS;
ADVANCED
MAZE SKILLS

PAGE 3 - 9

In 12.1 to 12.3, you practiced a simple task that was repeated in a larger program. What was the
simple task, and how was it used?

In 12.1, place6 is created to put six bags of popcorn in a row. This command is used in 12.2 –
repeated twice for the north and south rows, and once each for the east and west columns. In 12.3,
the defined command is modified from put to get to collect the bags of popcorn.

The defined command move is a useful one for irregular mazes. For your own reference, write out the

two versions of move that Karel uses to follow an irregular path; one for following the wall on his left,
and the other for following it on his right. Include indentations so that it is obvious which actions are
within the while loop and which are not.

FOLLOW
WALL TO
THE LEFT

FOLLOW
WALL TO THE

RIGHT

def move

 left

 while

wall

 right

 go

def move

 right

 while

wall

 left

 go

SECTION 12

PAGE 3-10

George has developed a design that will be used to print Halloween themed fabric.

 Here is the pattern, using pumpkin and eye. Write a defined command design that would
make this pattern.

 def design

 repeat 4

 put

 go

 left (or right)

Note: Karel must have alternating pumpkins and eyes
in his pocket in order for this program to work. The
pocket can be loaded by collecting alternating
pumpkins and eyes from rows before starting the
design.

Draw a pattern that could be based on this
design.

Write a program that would call a defined
command design to make this pattern.

Any sketch that makes multiple use of the basic
pattern is acceptable. Example:

To make a pattern like this, a defined command
can be created to move Karel over to start the
next design, and a third defined command can
move him into position for the next row

design

move4

design

nextrow

design

move4

design

14

SECTION 13

COMPARING
PROGRAMS;
SOLVING
COMPLEX
PROBLEMS

PAGE 3-13

Compare the two programs in 13.1 and 13.2. Write down the number of lines, the number of
operations, and the time it takes to run. Add other observations. Decide which one you prefer and
explain why using your code checking criteria (reliability, speed, ease of use, limitations).

 13.1 13.2

Number of lines 9 (not including comment lines) 13

Number of operations 503 243

Time to run program 9:16 (this will vary) 3:41

Observation: 13.1 has less lines, but runs twice as many operations and takes 3 x as long
as 13.2

Observation: 13.1 would be the only way to solve a problem with an irregular path, but
since we have straight columns, we can use a go command until we hit the
end wall, which is much faster. We collect all the pearls in a straight line
and return in a straight line.

I prefer 13.2 because the conditions permit a faster and more efficient program. It is reliable in
this column configuration. The program is a little longer than 13.1, but still short and easy to
understand and use. (if 13.1, it would be because the program could follow any wall, not just a
straight one. It is reliable under a wider range of conditions.)

Testing and optimizing a small component before using it in a larger program is an important
concept. Think of all the systems used to build a car. A car is made up of a drive train (mostly engine
and transmission), chassis, body, wheels, axles and steering, electrical systems, electronics, and so
forth. Pick one of these systems, or a small part of it such as a steering wheel. Use reliability, speed
(or efficiency), ease of use, and limitations as criteria. What would you look for in testing a design of
this system or part?

Answers will vary. Look for references to reliability, speed, ease of use, limitations.

SECTION 13
PAGE 3-14

15

SECTION 14

VARIABLES
AND
FUNCTIONS;
INC(), DEC(),
AND PRINT

PAGE 3-17

Using the word list, fill the blanks in the following definitions.

Variable: in terms of programming, variable is the name and value of something that will be
recorded in memory. The counting variable is used in Section 14. The initial value of this variable is
set: for example: n = 0.

inc(n)tells the program to increase the value of n. The default increment is 1.

dec(n)tells the program to decrease the value of n. The default is -1.

print(n)tells the program to print the final value of n after the program has ended. Text strings
can be printed out on their own or as part of a command. The text is always enclosed in quotation
marks.

What were the inc(n) or dec(n) functions used for in the Section 14 levels?

LEVEL USE OF INC(N) OR DEC(N)

14.1 to 14.3 Increases the number of maps found (if map)

14.4, 14.5 Increases the number of breaks found (if not wall)

14.6, 14.7
Decreases the number of bottles in Karel’s pocket (when he puts the
bottle on the shelf)

SECTION 14

PAGE 3-18

Write the following statements as print commands. The first one is done for you.

Karel has used n coins. print “Karel has used” (n) “coins.”

n fence sections are damaged. print (n) “sections of fence are
damaged.”

The total number of pages is n. print “The total number of pages is”

(n) “.”

All businesses must keep track of items they buy and sell in their inventories. Programs use counting
variables to keep track of the increasing and decreasing amounts of each item. It is helpful to write
alerts into the program, so that the purchaser knows when to order replacement stock. Write two lines
of code that will print out “Order light bulbs, item #10765” if the number of light bulbs is 15.

if n = 15

 print “Order light bulbs, item #10765.”

You are completely out of coral bracelets, item #35-672. Write a print message for your website store
program which tells the customer that the item is not available. Write it in cheerful language that
makes them want to continue browsing your store.

Example (answers may vary):

if Item35672 = 0

print “We are sorry, item #35-672 is sold out. We invite you to continue

browsing our fine and unique collection. For more information on availability

of the sold out item, please contact us.”

16

SECTION 15

VARIABLES
AND
FUNCTIONS,
INC(), DEC(),
RETURN,
LOCAL,
GLOBAL

PAGE 3-21

Here is some sample code. Underline the local variables, and circle the global variables.

def column

Count pearls:

 c = 0

 while pearl

 right

 go

 left

 inc(c)

 go

 return c

Main program:

result = column

print "There are", result, "pearls!"

Why can’t we print the variable c?

We cannot print the variable c because it was created within the defined function column. It can’t be
used outside of that function.

What is another way to write this program so that we can print c?

(This method is NOT recommended)

If we set the value of the variable c in the main program before calling the function column, then it is a
global variable and can be used to print c.

SECTION 15

PAGE 3-22

In this Section, you are able to increase or decrease a variable by more than one: in
effect, multiplying or dividing for each operation on the variable. Give examples of
how you would code the following. Answers may vary. These are sample answers.

Total sales of bicycles at
$285.00 each (note:
“endofthemonth” and
“bicyclesold” are not
keywords in Karel.)

def bikesales

 b=0

 while not [endofthemonth]

 if [bicyclesold)
 inc(b,285)

 return b

result=bikesales

print("The total value of bike sales is $", result)

Students are given pencils
from a box of 500. Each
student gets 3 pencils.

p=500

s=0

while p>2

 dec(p,3)

 inc(s,1)

print (s, "students received three pencils each.

There are", p, "pencils left.")

Note: since 3 pencils are being handed out at a time, it makes sense
to set the limit as p>2

Find out how many tomato
plants are in each row.
Then report on the number
of tomato plants in all the
rows.

Solution is similar to 15.7 (see solution manual)

 Define a command to find the leftmost edge of the row.

 Count the number of plants in a row (n)

 Count the number of rows (r) incrementing r by n each
row to get the total number of plants.

17

UNIT 4 SECTIONS 16-20

SECTION 16

USING GPSX
AND GPSY
SENSORS,
SYMBOLS

== != < >

PAGE 4-5

Match the symbols to their meanings:

== is greater than
< is not equal to

=! is equal to
> is less than

Using different colors or shading, mark and number the location of the following expressions on the
grid.

1. (gpsy >

3)and(gpsx ==

4)

2. (gpsy !=

6)and(gpsx <

1)

3. (gpsx ==

14)and(gpsy

== 11)

4. (gpsy == 9)

5. (gpsx ==

6)or(gpsx ==

8)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12

11 3

10

9 4

8

7

6

5

4 1

3

2

1

0 2 5

SECTION 16

PAGE 4-6

You need to pick up all your clothes and put them in the basket in the southwest corner of your room.
You use the Clean-O-Matic robot to take care of this chore. How will you program the robot?

 Answers may vary. Ideas could include:

 Some way of traveling through the room, for example: row by row, column by column

 Conditions: if clothes/get

 Note: since Karel cannot place more than one item in a square, the “basket” could be enough
squares in the southwest corner of the maze (say 9 x 9) to accommodate all the items.

 Use a gpsx/gpsy locator to get Karel to the corner.

 Karel could use a defined command similar to waterbox (Levels 11.5, 11.6) to place the items in
the “basket”.

Karel must retrieve three oxygen bottles left on
the mountain and report their location.

He must deposit them at the “base camp”
located on gpsy == 0, between gpsx == 12 and
gpsx == 14.

Write the sections of code that will perform just
these two tasks. Think of the best way to use
gpsx, gpsy. (Answers may vary)

retrieve oxygen bottles and report

location

if oxygen

 get

 print (“bottle found at”, gpsx, gpsy)

#deposit bottles at base camp

if ((gpsx>11 and gpsx<15)and gpsy ==0)

 put

 go

18

SECTION 17

USING
BOOLEAN
VALUES TRUE
AND FALSE

PAGE 4-9

How are Boolean values used in each level? Fill in the blanks in the following table.

Level Variable starts as Condition Test Outcome (True) Outcome (False)

17.1 not used on this
level

sensor keyword Karel finds the
sensor and prints
“sensor:” True

Karel does not find the sensor
(he either finds an empty cell
or another sensor) and prints
“sensor:” False

17.2 sn=false if snake

 sn = true

Karel prints that he
has found snake.

Karel prints that he has found a
spider. (note: all the mazes
contain either a snake or a
spider.)

17.3 nug = false if nugget

 nug = true

Karel prints that he
has found a gold
nugget.

Else, Karel prints that he has
found a gem.

17.4 cr=true

complete=true

cr=cr and bottle
(sensor words by
themselves work as
true/false Booleans. Cr
is changed to (cr and
bottle), so if a bottle is
present, cr remains true.
If there is no bottle cr
changes to false.

Karel finds a bottle in
every square. if
success (is met),
prints “The row was
complete!”

Else, Karel prints “One or
more bottles were missing!”

17.5 b=true b= b and bottle
(as above)

if success

Print “There was a
bottle in every
corner.”

else (success is not met);
prints “One or more bottles is
missing”.

17.6 fo = false

found = false

while not home

 fo=(fo or map)

success =

found

if success

Karel prints “I found
a map!”

Else

Karel prints “There was no
map!”

17.7 wa = false wa = (wa or

nugget)

success = walk

if success

Karel prints "I found
a nugget on the
way!"

Else

Karel prints "I did not find a
nugget!"

SECTION 17

PAGE 4-10

And/Or logic gate: electronic circuits are based on electrical signals that are either on or off. We can
think of on as True and off as False. We can use a “truth table” to predict whether or not the output
will be on or off. Complete the tables for the AND gate, and for the OR gate.

Type of Logic Gate Input Output

AND GATE

A = True (On)
B = True (On)

True

A = True (On)
B = False (Off)

False

A = False (Off)
B = True (On)

False

A = False (Off)
B = False (Off)

False

OR GATE

A = True (On)
B = True (On)

True

A = True (On)
B = False (Off)

True

A = False (Off)
B = True (On)

True

 A = False (Off)
B = False (Off)

False

19

SECTION 18

USING THE
FUNCTION
RANDINT()

PAGE 4-13

Chance situations: How would you write a function for the following?

Conditions Code (answers may vary in details such as names and print commands)

Rolling “snake eyes”

rn = 0

die1 = 0

die2 = 0

while (die1 != 1) or (die2 != 1)

 die1 = randint(6)

 die2 = randint(6)

 inc(rn)

 print("Roll", rn, ": die1 =", die1, ": die2 =", die2)

Rolling a 7 on a
dodecahedral die

rn = 0

die1 = 0

while (die1 != 7)

 die1 = randint(12)

 inc(rn)

 print("Roll", rn, ": die1 =", die1)

Explain the procedure for finding the maximum height of the columns in 18.6. What are the
limitations? What minor change is needed to find the minimum?

Answers may vary. Sample:

We set the initial value of the maximum (m) to 0. Once Karel runs the function column and gets a
height, the height (as “column”) is compared to the maximum. If it is greater than the maximum “if
c>m”, then m will be made equal to this new value “m=c”. If not, then it will stay the same. Only a
higher value will change it. At the end of the program, we should have the highest value of m, or
maximum.

Limitations: example (students may find other limitations): the sensors used to detect the column (in
this case light bulbs) must be consistent, present in every square of the column. The moment they run
out, the program assumes that it has reached the top.

To change this to the minimum, we start with a maximum value, in this case m=7, and the column
heights are compared to see if they are less. If they are, m is decreased.

SECTION 18

PAGE 4-14

It’s your worst nightmare: you start a test, and can’t remember anything! You will have “go random”
and hope for the best. This is a multiple choice test, with a, b, c, or d as answers. Write those choices
on scraps of paper to be drawn at random for each answer….. Write which answer you drew in the
spaces below. The answer key is at the end of this section. Check your answers. Did guessing (random
drawing) pass the test? Compare your results with those of another student.

Question
Random
Answer

Actual
Answer

Correct?
Y/N

Question
Random
Answer

Actual
Answer

Correct?
Y/N

1. 6.

2.
Students gather and record data
and sum at the bottom

7.

3. 8.

4. 9.

5. 10.

Score (Correct/Total) Did you pass?

Is this a good application for randomness? Explain.

Answers will vary. Generally speaking, this is not a good application. Most runs will fail the test.
Students should refer to their data to justify their response.

20

SECTION 19

EMPTY

AND

NON-EMPTY

LISTS

PAGE 4-17

In the table below, explain the meaning of each line of code.

Code Meaning (answers may vary)

A = [1, 3, 5, 7, 9] The list A equals a list of five odd numbers starting with 1

for x in L

 print “Map found at:”, x

For variable x in list L, print “Map found at” the value of x.

Y = [] The list Y equals (is set as, defined as) an empty list

C.append (x) Append variable x to list C.

len(m) The length of list m (the total number of items in list m)

Build list commands for the following. We will call the list P.

Start with an empty list. P = []

In order, add three erasers, one pencil sharpener, two
pencils, one pen

P.append ("eraser")

P.append ("eraser")

P.append ("eraser")

P.append ("pencil sharpener")

P.append ("pencil")

P.append ("pencil")

P.append ("pen")

Parse the list using a For loop to print out each item.
for x in P

 print x

Find the length of the list.
n = len(P)

print(n) (optional)

SECTION 19

PAGE 4-18

You need a bouquet of one of each variety of flowers. Create a list that tells your flower-picking robot
how many steps to take to get to the next type of flower.

F = [1, 3, 2, 4]

Note: this is the default maze in Creative
Suite. Students just have to add three
lines to the code.

Write a program that will have Karel record the
gpsy location of each key and print a list.
K=[]

while not home

 go

 if key

 get

 K.append(gpsy)

 if wall

 right

 if wall

 repeat 2

 left

print(K)

21

SECTION 20

WORKING
WITH LISTS

PAGE 4-21

In the table below, explain the meaning of each line of code.

Code Meaning

b = A.pop() Remove the last item on list A and assign it (return
it) to variable b

if orchid

 o.append([gpsx, gpsy])

If Karel finds an orchid, append the gpsx and gpsy
coordinates to list o

repeat 4

 la = X.pop()

Remove the last item 4 times from X and return it
to la.

n = L.pop(0) Remove the first item on list L and return it to n.

R.append(R2.pop(0)) Add the first item from list R2 to list R

Build commands for Karel. We are making a map of coin locations, using a list m. Note: students can
test this code on the default program in Creative Suite by substituting key for coin.

Start with an empty list. m = []

While not home, move forward. If there is a coin, add
True to the list. Otherwise add False.

while not home

 go

 if coin

 m.append(True)

 else

 m.append(False)

If there is a wall, turn left.
If there is a wall, turn right twice.

 if wall

 left

 if wall

 right

 right

Print the list. print(m)

SECTION 20

PAGE 4-21

Here is a list of numbers. L=[2, 9, 6, 1, 0, 5, 5, 8, 10, 4, 3, 6, 8, 7, 20, 1]

Write a for loop that will test the
values in L, and if they are less
than 6, append them to an empty
list K. Print out the results.

L=[2,9,6,1,0,5,5,8,10,4,3,6,8,7,20,1]

K=[]

for x in L

 if x<6

 K.append(x)

 print("Added",x,"to K")

print("List K now contains",K)

You manage a fast food restaurant. You stock your hamburger buns once a week. What would you
need to write into a program that monitored and reported the hamburger bun inventory? (You do
not need to write the code – just make a plan)

Answers will vary. Sample:

You will need some information on how many buns are used each week, and maybe more detailed
information, such as how many per day, or if there are peak days to be aware of. You also need to
know how long it takes to get new buns delivered. With that information, you can set a variable
equal to your inventory, take out a bun each time it is used, then set alerts for reordering based on
the remaining number of buns. The trigger number will depend on what you have learned from
your data. This could become more sophisticated based on delivery schedules, peak days, etc.

22

UNIT 5 SECTIONS 21-25

SECTION 21

PROBABILITY

PAGE 5-5

Complete the truth tables to show why rand is a 50/50 probability, and rand and rand is 25/75.

Function Possible outcomes Explanation for Probability (sample answers)
rand true The probability is 50/50 because 1 out of 2 possible

outcomes is true, and 1 out of 2 outcomes is

false. false

rand and

rand

true + true = true

The probability is 25/75 because 1 out of 4 possible
outcomes is true, and 3 out of 4 outcomes are

false. If false is an outcome of part of an and

function, the outcome will be false. (note: see
questions Section 17, page 4-10 for an illustration of
and circuits)

 true + false = false

 false + true = false

 false + false = true

Think of reasons to use probability in a game by answering these questions.

Karel uses rand to control his movements in Levels 21.5 to 21.7. What types of environment are best
suited to random movement? Answers may vary, sample answer: Environments suited to random
movement would include open spaces, especially with irregular boundaries and/or irregularly placed
obstacles. These cannot be solved by either a wall-following algorithm (which would miss the open
space), or one that uses columns or rows (which would not work in a simple form because of the
irregular boundaries).

When would you use a 50/50 probability, and when would you bias the decision by using 25/75 (Look
back to Levels 21.3, 21.4)? Answers may vary, sample answer: conditions dictate which way to go.
50/50: Simple yes/no decisions or outcomes that only have 2 choices, types of materials present (e.g.
even distribution of two different objects).

25/75: The “correct” choice or outcome is one out of a range of possibilities; uneven distributions of
objects; favored sorting of objects into one area over another.

PAGE 5-6 Classic probability exercises help to visualize how rand works. Put colored tiles in a bag (2 tiles of
different colors for the 50/50, and 1 tile of one color, 3 tiles of another for the 25/75 draw) and draw
them out. Tally the results for 10 draws, 25 draws and 100 draws and record the total counts in the
chart. How close to 50/50 and 25/75 are you at each point?

Probability 10 trials 25 trials 100 trials Comments

50/50 Color 1
Students record results in these columns

Summarize observations. Comment
on how close each result matches the
probability, and if the match improves
with the number of trials (normally,
more trials = a closer match)

 Color 2

25/75 Color 1
Students record results in these columns

 Color 2

Karel is exploring a dark cave.
Write a program that will have
Karel move left or right until he
finds a flashlight. Don’t forget to
check for walls.

This program will be similar to 21.5-21.7
while empty

 go

 if wall

 left

 if wall

 right

 right

 if flashlight

 get

23

SECTION 22

RECURSION

PAGE 5-9

Recursion can be a difficult concept to grasp. Explain the role of each component in the following
program. Here are some vocabulary terms to help you:

custom command stopping condition recursive call main
program

Line Purpose (what is happening on this line?)

def walk Defines the custom command walk

 if not home Stopping condition (walk will continue to call
itself until Karel is home)

 if shield Body condition

 get Body command as a result of the condition

 go Body command

 walk Recursive call (starts the body of walk again)

 return Ends walk and returns to main program.

walk Main program

Why is if not home the stopping condition? How does this differ from a while loop that uses
while not home?

Sample answer: If not home is used because each square must be tested independently before

starting the recursion. If not home only tests that particular square, whereas a while loop
continues the loop’s body commands until Karel reaches the home square.

PAGE 5-10 Write a recursive function for one of the following situations, or make up your own.

 Do pushups until your heartrate reaches 140
beats per minute. Then rest.

 Work in the garden until the temperature is
80 degrees F. Then go inside.

 Practice long division until you can divide a
five digit number by a two digit number
correctly. Then play a video game.

 Eat hot dogs at a contest until you are full.
Then, please stop.

Your turn:

Answers may vary. These are concept maps,
rather than actual code. Answers should include a
defined command, conditions, body commands,
recursive call, return, and main program
elements. Sample answer:

def routine
 if heartrate < 140
 pushup
 routine
 return
routine
rest

24

SECTION 23

RECURSION II

PAGE 5-13

Describe the recursion in each level. What stopped the recursion?

23.1 robber moves Karel up to the next level each time. if wall is the stopping condition.
The recursion will stop when Karel does not detect a wall (in other words, he reaches the edge of
the maze)

23.2 row moves Karel along a row (in this example, it is actually a column). If candy is the
stopping condition. The recursion will stop when there is no candy in the square.

23.3
(bounty)

bounty is a recursion that contains the recursion row. It moves Karel along a row, collecting
candy until no candy is detected, then the row recursion ends and Karel turns left. row will start

again on the next row. The stopping condition for bounty is if not home. The recursion will
end when Karel reaches the home square.

23.4 sum adds a set of numbers together that decrease by 1 each time. The stopping condition is if
n>0, so the recursion will stop when the current value of n is zero.

23.5 addlist adds all the numbers in a list. Each time a number is added, it is removed from the

list. if len(T)>0 is the stopping condition. The recursion will stop when the list is empty.

23.6 edge moves Karel forward, getting a pie, until he does not detect a pie. The stopping condition
is if pie.

23.7 (eat) eat is a recursion that contains the recursion edge. It moves Karel along a edge, eating pie until
no pie is detected, then the edge recursion ends and Karel turns around, goes back one step,

and turns left. edge will start again on the next row. The stopping condition for bounty is if
pie. The recursion will end when Karel no longer detects pies, even after he has turned around
and repositioned himself.

In the final level (23.7), Karel solves an array by moving in a spiral pattern. Compare this way of
solving arrays to the one in Level 15.7 Answers may vary. Sample answers:

15.7 23.7

Karel detects the left corner of the bottom row,
then counts the items along that row. When he
reaches the right corner, he turns and counts the
number of rows, then multiplies to get a total.

This program can be run with any sized array that
is completely filled (no holes). Karel can be in any
position along the row to start. This program is
being run to count the number of units (crates).

Karel goes along a row. When he runs out of pie,
he goes back to his last position and turns. Then
he starts eating pies again. The program ends
when there are no more pies.

This program can also be run with an array of any
size. It could also be run with a squared spiral,
which 15.7 cannot do.

It assumes Karel is starting in a fixed position.

It does not count the number of pies, but this
could be written into the program, incrementing
a variable every time he eats a pie, and returning
the total at the end.

PAGE 5-14

Write a program to solve the following problem, using recursion.

Oh no! The General has sent
Sophia to the moon. Karel
hurries to the launch pad,
climbs into the rocket and
gets ready to blast off. All he
needs is the countdown.
Write a recursion that will
count down from 10 to 0 and
print “Blast Off!” at the end.

def countdown

 # Stopping condition:

 if n > 0

 print (n, “…”)

 dec(n)

 # Recursive call:

 countdown

 return

Main program:

Set n to 10:

n = 10

countdown

Print Blastoff

print ("Blast Off!”)

What skills did you practice on each level? Use the table to review each level.

25

SECTION 24

ADVANCED
SKILLS

PAGE 5-17

Here are some terms that you can use.

gpsx, gpsy coordinates
Append and pop lists

while conditional loops if/else conditions

Nested repeat loops Complex tasks or patterns reduced to simpler
ones

Information from one part of a puzzle used to
solve another part.

Defined functions with counting variables

Students may find more than one skill in a level.

Skill Found in Levels:

gpsx, gpsy coordinates 24.2, 24.5

while conditional loops 24.2 – 24.7 (note: 24.7 can be solved without while)

Nested repeat loops 24.1, 24.7 (note: 24.6 uses repeat loops that are not
nested)

Information from one part of the puzzle
used to solve another part

As defined commands: 24.2, 24.4, 24.5, 24.6. (As
used in a list: 24.5, 24.7)

Append and pop lists 24.5 (append only), 24.7 (append and pop)

If/else conditions 24.5, (24.2, 24.3, 24.4, 24.6, and 24.7 use if but do
not use else)

Complex tasks or patterns reduced to
simpler ones

All levels

Defined functions with counting variables 24.2

PAGE 5-18

Traditional crafts and artwork contain many patterns. Suggest ways to write programs to create
these examples.

Answers will vary. Since these patterns are regular, repeat 4 or for i in range
(4) loops would be useful. Students’ experience is mostly with repeat loops.
The square border, outside dots, circle, inside dots, curved edge pattern,
inside star and center dot must all be included in the program. The
background could be assigned a black color, and the objects colored white,
with the exception of the black inside star (unless this is just the edge of a
shape)

Answers will vary. This time there is a pattern repeated 3 times. The
pattern is a curved spiral. This could be created with a list that is decreased
each time until the variable reaches a limiting value, or with steps repeated
a specific number of times. The outer circle is a separate part of the
program.

26

SECTION 25

CHALLENGES

PAGE 5-21

PAGE 5-22

Students use this section to solve problems and revisit puzzles. Grading is at teacher’s
discretion, and may include vocabulary usage, evidence of logical reasoning, details in
reflections.

In this final section, you can practice coding complex tasks, including some classic logic problems.

Some of the solutions are tricky, so here is an extra note-taker page to help you work out your
solutions.

If you have stuck with Karel all the way to the end of Unit 5 – Congratulations! You now have some
great programming skills.

Pick a level at random from each of the previous 4 units. Erase the code, time yourself, and see how
fast you can complete that level. Did you get it right the first time? Is your code elegant (simple,
effective)? Record your results.

Answers will vary

