
Karel - List of Commands

April 18, 20141

Contents

1 About this document 2

2 Language variants 2

3 Karel module in NCLab 2

4 Basic commands 2

5 Conditions 3

6 Loops 3

7 Custom commands 3

8 Logical expressions 4

9 GPS coordinates 4

10 Randomness 4

11 Variables 4

12 Lists 5

13 Functions 5

14 Recursion 6
1This document was prepared using the LATEX module in NCLab



1 About this document

This document only covers selected basic functionality of Karel the Robot, and it is meant
to be a reference rather than a learning material. If you like to learn computer programming
with Karel, take the NCLab’s interactive self-paced course Earn Black Belt in Computer Pro-
gramming! More information about the course can be found at https://nclab.com/karel/.

2 Language variants

Karel can be used with English, Spanish, German, Czech, Polish, Italian, and French com-
mands. All language versions of this document can be found in the menu of the Karel module.
Any of these seven languages can also be chosen in Settings to be the main language for
NCLab.

3 Karel module in NCLab

The Karel module in NCLab has four modes:

• First Steps (manual mode): Guide the robot using the mouse.

• Programming: Write and run programs.

• Designer: Design your own mazes.

• Games: Design your own games.

You can publish all your programs and games on the web and on social networks using the
function ”Publish to the web”.

4 Basic commands

Karel knows five basic commands that are equivalent to the five buttons in manual mode:

• go: Make one step forward.



• left: Turn 90 degrees left.

• right: Turn 90 degrees right.

• get: Collect an object from the ground.

• put: Put an object on the ground.

5 Conditions

The if - else conditions help the robot check his surroundings and make decisions at
runtime. Notice the indentation. The else branch can be omitted if not needed. Example:

if wall

left

left

else

go

6 Loops

There are two types of loops: The repeat loop is used when the number of repetitions is
known in advance:

repeat 5

go

The while loop should be used when we do not know in advance how many repetitions will
be needed:

while not wall

go

Both loops can contain basic commands, conditions, other loops, and custom commands.

7 Custom commands

Custom commands should be defined for ”smaller tasks” that are done more than once in
the program:

def turnback

repeat 2

left



8 Logical expressions

Keyword not means negation. It returns True if the operand is False and vice versa.
Example:

while not wall

go

Keyword and returns True if both statements are True, else it returns False. Example:

while not wall and not home

go

Keyword or returns True if at least one of the statements is True, otherwise it returns False.
Example:

if gem or nugget

get

9 GPS coordinates

Karel can retrieve his GPS coordinates using the commands gpsx and gpsy. In the Southwest
corner of the maze, both gpsx and gpsy are 0. In the Northeast corner, gpsx is 14 and gpsy

is 11. Both GPS coordinates can be used together with variables - see Section 11.

10 Randomness

The command rand returns randomly True or False. This allows Karel to make random
moves. Example:

if rand

left

else

right

11 Variables

Variables are used to store information. Karel knows three types of variables:

1. Numerical variables store integer numbers:

n1 = gpsx

n2 = gpsy

They can be increased by one via the command inc and decreased by one via the
command dec:



inc(n1)

dec(n2)

They can also be increased or decreased by more than one:

inc(n1, 3)

dec(n2, 2)

2. Text variables store text strings:

my_name = "Karel"

3. Logical variables store logical values (True, False):

karel_is_west = (gpsx == 0)

karel_faces_north = north

Variables can be printed using the print command:

print "Value of n1 is", n1

12 Lists

Karel provides basic functionality of Python lists. As in Python, indices start with zero:

• L = [] ... creates an empty list L.

• len(L) ... returns the length of the list L.

• L[i] ... returns item at position i.

• L.append(x) ... appends item x at the end of L.

• y = L.pop() ... removes and returns the last item from L.

• y = L.pop(i) ... removes and returns item at position i.

• y = L.pop(0) ... removes and returns the first item of L.

• del L[i] ... removes item at position i.

13 Functions

Functions in Karel are similar to custom commands, but they can return values via the
command return. Example:

def measure_distance

n = 0

while not wall

inc(n)

go

return n



14 Recursion

Karel is capable of recursion, which means that a custom command or function can call
itself. Example:

def climb_stairs

while wall

left

go

right

go

climb_stairs

Commands or functions can also be mutually recursive (function A calls function B and at
the same time function B calls function A).


