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Part 1
Euler equations



Introduction

Nowadays people in many different domains of their activity meet the problem how to
describe or predict behavior of physical quantities in flowing mediums. Due to the develop-
ment of highly efficient computers the Computational Fluid Dynamics plays an important
role in searching answers. Its application does not only lie in the design of turbines, in
construction of planes, ships or cars but also in medicine, dealing with flow of blood.

Part I of this thesis is devoted to the three-dimensional Euler equations. First, we in-
troduce some basic notation and physical quantities describing motion of fluids. We will
formulate the system of conservation laws which govern compressible inviscid flow. After
having introduced the Finite Volume Method, prepared some basic theoretical tools and dis-
cussed the boundary conditions, we will develop four methods for solving it. These methods
will be compared and then some more interesting numerical experiments performed.

There is a wide class of literature concerning the study of numerical solution of the Euler
equations which we think it is useful to mention here shortly — e.g. [13], [26], [31] [37], [36],
[35], [7], [14], [33], [3], [5], [6], [11], [24], [27], [28], [23], [32] etc.

In the second part we will deal with grid generation. We will set up a method based
on computer simulation of a real physical process — interaction of elementary particles with
charge.



Notations

Throughout this contribution we endeavour to stick to the common notation. To support
openness and comprehensibility of our explanations, in our conception vectors will always
be columns and we will use bold-faced symbols for them. Here is a short list of symbols we
will use:

t ... time variable,
T .
x = (z,y,2)" ... space variable,
v =v(x,t) ... velocity vector,
u(x,t),v(x,t), w(x,t) ... its components,
2

v* ... square of its Fuclidean norm,
o(x,t) ... density,
p(x,t) ... pressure,

(x,t) ... absolute temperature,
x,t) = ¢, T ... intern specific energy,
(
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E(x,t) = o(e + $Vv?) ... total specific energy,

S(x,t) ... entropy,

c(x,t) = \/% ... sound speed,

f(x,t) = (f1, fo, f3)T(x t) ... external body forces per unit of mass,
7(x,t) ... stress tensor,

q(x,t) ... density of external heat sources,

q(x,t) ... heat flux vector,

Ep,cv ... specific heats,

R =cp —cy ... the universal gas constant and

K= j—:‘ ... the Poisson adiabatic constant.

We denote further

R ... real numbers,

R* ... open interval (0, 0),

R’ ... i-dimensional geometrical space generated by R,
exp(RY) ... the set of all subsets of R’,

Wi - .. the Lebesgue measure in R, i = 1,2, 3.

I ... the canonical matrix,
diag(...) ... diagonal matrix I(.. .)T
Vi ... gradient operator in R® where i =1,2,...,5.
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Except this, from time to time we will have to use the index-notation for vector components,
especially in sums, enumerations etc. We won’t be using the Einstein convention.



1 Basic equations describing flow

At first we are going to mention the famous Transport theorem and derive some basic
equations describing flow. Then we put them together and formulate the problem.

1.1 Transport theorem

Assumptions:

i) (T1,T>) is a finite time interval.

i) Q: (Ty, Ty) — exp(R?) is a time-dependent domain, Q(t) is bounded and has Lipschitz-
continuous boundary for ¢t € (T1, T5).

We denote M = {(x,t),x € Q(t),t € (T1,T2)}.

144) the velocity vector v is defined in M, v € [CI(M)]g.

1v) to is an arbitrary time instant, to € (11,72), o(to) =0 C @ C Q(to) is a bounded domain
with Lipschitz-continuous boundary (so-called control volume).

v) F is an arbitrary scalar function defined in M, F € C'(M).

Further, we denote (X, t) the trajectory of the particle which at the time instant tg occured

at the position X € Q(tg).

Theorem:
Under assumptions 1),44),...,v) there is a finite time interval ¢ty € (t1,t2) C (T1,T3) for
every time instant ¢ of which the equation

(1) 4 F(x,t)dx = 6—F(x, t) + divF(x, t)v(x, t)dx
dt O'(t) O'(t) 6t

is valid.

Proof: see [13].

1.2 Conservation laws

1.2.1 Law of conservation of mass

“The mass of a piece of fluid formed by the same particles at any time instant is constant
in time”, i.e.

d

— o(x,t)dx = 0.
dt G'(t)

Using the Transport theorem (the relation (1)), we can write

@(x, t) + divo(x, t)v(x,t)dx = 0.



The control volume o (tg) is arbitrary, hence

do

(2) E(X’ t) + divo(x,t)v(x,t) = 0.

1.2.2 Balance of momentum

“The rate of change of total momentum of a piece of fluid formed by the same particles at
any time instant is equal to the forces acting on this piece of fluid’, i.e.

i/ gvdx:/ gfdx+/ T.vdS.
dt o(t) o (t) 8o (t)

Here the external body forces f and the stress tensor 7 are given, by v we denote the outside
normal vector. Using the Transport theorem, we have

/ dovi +divgv,~vdx=/ gfidx—}-/ div(r),dx
oty Ot o(t) o(t)

for every vector component, respectively. Once more, the control volume o (tp) is arbitrary,
hence
Oov;

3) 5

Since 7 : R®* = R?, it is

+ divov;v = of; + div(7),.

3 3 3
. (9’1']'1 67']2 67’13
divr = Zax-’zam ' 2
j=1 J j=1 J ]:1
1.2.3 Law of conservation of energy

“The rate of change of the total energy of a piece of fluid formed by the same particles at
any time instant is equal to the sum of the powers of the volume and surface forces acting
on this piece of fluid and to the amount of heat transmitted to this piece of fluid’, i.e.

4 de:/ gf.vdx+/ TV.VdS+/ qux—/ q.vdS.
dt Jo o(t) B0 (t) o(t) Bo(t)

In the end, we obtain

OF 01j;v; .
4) ﬁ+d1va—gfv+ZZ TJU +gq—d1vg
=1 j=1

in the same way as before.



1.3 Formulation of the problem

In case of the Euler equations we neglect external body forces, heat flux and external heat
sources. We consider the stress tensor in the Newtonian form 7 = —pI (where p is the
pressure). In our conception, the domain Q C R? will be constant in time, with piecewise
linear continuous boundary. Further, let 7 > 0 be a real number and let e, g, p, v be defined
and piecewise smooth in Q x (0, 7).

To settle number of equations and number of unknowns, we must set additional assumptions.
Thus, let us consider a perfect gas, which means p = p(p, e) and the state equation

(5) p=oRT
is valid. After having replaced T and R, we get the wanted dependence

v C’U

(6) p=gRT=gR<ci> = (C”_C”>e=(n—1)ge=(m—1) <E—%gv2>.

Now we can put equations (2), (3) ... (6) together, present the system of the Euler equations
in its conservative form

0 ou ov ow
9 ou gu2 +p ) ouv P ouw
(7) 5l @ |5 ouv + o ovl+p |+ 5 ovw =0
ow ouw Y oW 1 owr+p
E (E+p)u (E+p)v (E +pw

and formulate the problem: _
We search for piecewise smooth scalar functions g, u, v, w, E and p defined in {2 x 0,7)
meeting for almost all (x,t) € Q x (0,7) the system (7) with the initial condition

(8) qa(x,0) = qo(x) x €0
and the boundary condition
(9) B(q(x,t)) =0 (x,t) € 90 x (0,7),

where q(x,t) = (o, ou, ov, ow, E)* (x,t), B is a boundary operator (the form of which has
not been found out until now) and qo(x) is a given piecewise smooth function defined almost
everywhere in ).

Using the new notation, we have

(10) o=aq, u=@/qa, v=a/a, w=aul/a, E=g¢
and according to (6)



2 2 2
) p=n=) (- EEERIT) sy,
1

Conditions ¢ > 0 and p > 0 call for a definition of physical admissible state set

2 2 2
(12) Q:{qeR5; Q1>0&q5><W)}.
1
Now let us transform the system (7) into the new variables:
0 o} o} 0
(13) aq(xa t) + 8_$f(q(x’ t)) + a_yg(q(xa t)) + &h(q(xat)) - 0:

where f, g, h: Q = R®. According to (7), (10) and (11) it is

q2

2 2 2 2
qqz1 + (I{ _ 1) (q5 _ g2 +gZ1+Q4 )
(14) f(q) = oe
q294
a 2 2 2
g_-f (nq5 —(k—1)2 +gzl+q4 )

The remaining two functions g(q), h(q) look similar.



2 Numerical solution

2.1 Finite volume method

Let us divide the domain 2 into a finite number of subdomains Q;, ¢ = 1,2,..., N in the
following manner:

. §); open, convex with a piecewise linear boundary (polyhedra), i =1,2,...,N
= N =
Q= Ui:l QZ
. Qiﬂﬂj =0,i=1,2,...,N
. in case 0Q; NONY; # 0 i,j5 € {1,2,..., N}, exactly one of the following options is valid:

=N =

a) 0€; and 09 share just one vertex
b) 0€Q; and 9Q; share just one edge
c) 09; and 0Q; share just one side,

The expression '0€); and 0f); share a vertex’ means that this point is a vertex in 0Q; and is
a vertex in 0€); etc.

These subdomains are so-called finite volumes (elements). In case u2(90Q; N ON) # 0,
Q; is a boundary finite volume. In case p2(0€; N 0Q;) # 0 and 4c) is valid, we call these
finite volumes neighbours. Let us ny denote the boundary finite element number. Because of
the discretization of the Euler equations we need that every finite volume has just so many
neighbours how many sides it has. That is why we define so-called fictive finite volumes:

Let Q;, i € {1,2,...,N}, be a boundary finite volume. To its side D C 9Q; N 9N we
define the fictive finite volume 2;p as an arbitrary representative of the class

B = {Q,-D; Qip open convex polyhedron, Qip N, = 0, 0p NN, = 8Q; N 00N}

Finite volumes which are not fictive we call real. The set of all fictive finite volumes has
M > np members which we can denote Qn11, Qn42,..., Qv Let us define the index set

(21.15) K(G) = {j € {1,2,...,N + M}\ {j}; m(02N99) >0} i€ {1,2...,N}.
Let Q; and Q; be two neighbouring finite volumes, ¢ € {1,2,...,N}, j € {1,2,...,N+ M},
we denote 0€);; = 052; N 0NY;. For the boundary of every finite volume it holds
(2.1.16) o= |J 0% i=1,2,...,N.

JEK(@)

Number of members of any index set K(i) is at least four, is not limited and it needs not to
be the same for ¢ € {1,2,..., N}. Now we define the set

(2.1.17) V={feL'(Q); f(x) is constant for x € ;, i=1,2,...,N}.
An arbitrary function f € L'(2) will be approximated with the function (or with the class



of L' - equivalent functions) f € V meeting

s [£(O) dE for x€Q;  i=1,2,...,N
(2.1.18) fx) = i

0 elsewhere in

The value f(x) we usually identify with the value in the center of gravity of ;. For more
detail explanation about the error estimate see [26]. Let us now proceed to the discretization
of the system (7):

Having integrated the system (13) over finite volumes 2;, ¢ = 1,2,..., N and having used
the Gauss theorem we obtain

5 L aGenax [ sate0)vis, 00-+ (A, 0)ris, (0 + hlal, )i, (95 =0

(2.1.19)
wherei =1,2,...,N, ¢t € (0,7) and v;; is the unit outside normal vector to 0Q; at x € 0€;
defined almost everywhere in (.

Using (2.1.16) we can transform (2.1.19) to

d
E/{L q(X,t)dX+ Z

/ fa(x, )vij; (%) +(alx, 1)vij, (%) +h(a(x, 1))vij 5 (x)dS = 0,
jek(s) ) 9%

where i = 1,2,...,N, ¢t € (0,7). We replace the function q(-,t) by the piecewise constant
function q(-,t) defined by (2.1.18):

d . . . .
(2.1.20) H3(Qi)afh(t) + ) B(Gi(), G5(), vij, p2(0045)) =0 i =1,2,...,N,
JEK()
where ¢;(t) denotes q(x,t) for x € Q; etc. The function ®(q;(¢), q;(¢), vsj, u2(0;5)) (or
simply ®;;(dqi(t), d;(t))) approximates the integral

(2.1.21) /3 f(ax, D)y, + E(alx O)vig, + halx, O)vis S

which expresses the flux of q(x, ¢) through the side 9Q;; of the finite volume ;. The function
® (so-called numerical flur) must satisfy the following two conditions:

(2.1.22) ®(q,q,v,a) = a(f(q)n1 + g(q)v2 + h(q)vs)
(2123) ‘I>(Q1,QZ;V;G) = _(I)(anqla_Vaa)

for every q,q1,q2 € Q, v € R? |v| = 1 and for every a € RY.

10



The relation (2.1.22) is so-called consistence condition, the other one secures the numer-
ical flux is conservative.

Let us consider a finite division of the time interval (0,7): 0=ty <t;1 < ... <t =T
and denote q;* = qi(tx), k = 0,1,...,L. We consider the equation (2.1.20) only at this
discrete times and approximate

dgi _ q*t' —q*

~

dt  tegr —te

where k =0,1,...,L—1and i =0,1,..., N. The equation (2.1.20) has now the form
At

(2.1.24) 't = q* - (6) > ®i(at, q"),

Hs4) sexta

where Aty = tgy1 —ty, k=0,1,...,L—1and¢=0,1,...,N.

The scheme (2.1.24) is explicit, conservative and its properties are given notably by
choice of the numerical flux ®. Later, in sections 2.4 and 2.5, we will construct the Osher-
Solomon numerical flux. Before this, after having prepared some necessary theoretical tools,
we will mention the Riemann problem, the approximate solution to which is for the flux
construction very important.

2.2 Theoretical tools
2.2.1 Matrix A

Let us denote by the symbol A(q) the Jacobi matrix of f(q). We express f(q) in the
conservation variables, calculate its gradient and present it in its physical form:

0 1 0 0 0

Ely? —y? B—kK)u (1—-k)w (QA-r)w k-1
A(q) = —uv v u 0 0
—uw w 0 u 0

u ((m —1)v2 - n%) m% —(k—1u? - 51v? (1—k)uv (1—kluw kKu

(2.2.25)

2.2.2 Eigenvalues

In this paragraph we will calculate eigenvalues of the matrix A(q). Let us denote M(q, \) =
A(q) — M. Its determinant can be computed quite easily using reduction of the first row.

We denote M; the matrix formed by omitting the first row and the first column of M and
M, the matrix formed by omitting the first row and second column of M.

11



It follows

(2.2.26) detM = —\detM; — detMs.

Both the determinants we will obtain in a similar way. We denote

Mj; the matrix formed by omitting the second row and the first column of Mjy,
M2 the matrix formed by omitting the second row and the second column of My,

Mo, the matrix formed by omitting the second row and the first column of My
Moo the matrix formed by omitting the second row and the second column of M.

and start to calculate:

(2.2.27) detMy; = —v(u — A)?(k — 1)
(2.2.28) detMys = —%(u C V(0 = w?) (k= 1) — w23 + k) + 6ud — 202 + ¢2)
(2229) dethl = detM11

detMoo = %(u—)\) (=2u® — Ak — 3) — 20%u(l — K) — wA(k — 1) + 2c°u — v*A(k — 1)) .
(2.2.30)

According to the reduction theorem we further have

(2231) detM1 = —UdetMn - ()\ - u)detMu
(2.2.32) detM2 = yvdetMa21 — (A — u)detMaa.
By substituting into (2.2.26) we get

(2.2.33) detM(q,\) = A —u)’(A—u— )X —u+c).

Thus, Sp(A(q)) = {¢—u,u,c+u}. As you will see later, at this moment it is suitable to
arrange the eigenvalues according to the magnitude A;(q) = ¢—u, A2(q) = A3(q) = \(q) =
uwand A;(q) =u + e

2.2.3 Eigenvectors

In this paragraph we will calculate the matrix A(q) eigenvectors. First, let us deal with the
eigenvalue A2(q) = A3(q) = As(q) = w:

—u 1 0 0 0

Eolv? — g2 (2 - K)u 1-kw (A-rw (k-1)
A—ul = —uv v 0 0 0
—uw w 0 0 0

u ((KZ —-1)vZ - K:E) kE — (k- 1)u? - (”;1)v2 1—-kr)uww (1-—kruw &k-—1lu

(2.2.34)

12



The second row of (2.2.34) multiplied by (—u) and added to the last row equals to the first
row multiplied by (k£ —u? — £51v?). The rank of (2.2.34) is equal to two, which means

we can neglect the last three rows and take care of the first two only.

We are looking for three linear independent vectors (denoted z1(q), z2(q) and z3(q)) which
are orthogonal to the following two rows:

(2.2.35) (—u,1,0,0,0)

(2.2.36) (R; le2_ u?, (2 = K)u, (1 — k)v, (1 — K)w, (k — 1)) .

When we set the two first components of two sought vectors equal to zero, it is sufficient to
look for them in the orthogonal supplement of

(2.2.37) (0,0,v,w,—1).

Thus, we obtain easily

(2.2.38) z1(q) = (0,0,1,0,v)"
(2.2.39) z2(q) = (0,0,0,1,w)".

Let us note that these vectors are not unique - for every q € Q they can be multiplied
by an arbitrary nonzero constant. In general they can be multiplied by an arbitrary nonzero
function of q. In our case, these functions are set identically to one.

The first two components of zg(q) are (from the orthogonality to (2.2.35)) 231 = 1 and
z32 = u. Further, orthogonality to (2.2.36) gives

2
(2.2.40) (1 - K)vzzs + (1 — kK)wzss + (k— 1)z35 = (k — 1) <u2 - %)
and
v2
(2241) V233 + w234 + u? = 7 + 235.

Setting 233 = v and 224 = w we get

2 T
(2242) Zg(q) = (1,114,’1},’11), %) .

With these vectors, there would be some troubles in further explanation. As you see later,
we will need all the eigenvectors to have a nonzero first component. We use that eigenvectors
of A corresponding to the eigenvalue u generate for every q € Q a linear subspace in R®.
It is easy to see that vectors r2(q), rz(q) and rs(q) generate for every q € Q the same
subspace.

13



o\ T
(2243) r2(q) = (1,u,v,w, v?)
T

(2.2.44) r3(q) = (1, u,v — ¢, w, %2 - vc)
‘72 T

(2.2.45) ra(q) = <1,u,v,w —6 5 = wc)
Analogously to A;1(q) = u — ¢ we find the eigenvector

v2 c? r
(2.2.46) ri(q) = <l,u — VW, o + 1 uc)
and to the last eigenvalue A;(q) = u + ¢ the eigenvector

v2 c? r
(2.2.47) r5(q) = <l,u + ¢, v, w, - + ] +uc) .

Vectors r1(q), z2(q), z3(q), z4(q) and rs(q) are linearly independent for every q € Q,
therefore also r1(q), r2(q), r3(q), r4(q) and r5(q) are linearly independent for every q € Q.

2.2.4 Eigenvector basis

Eigenvectors of the matrix A(q) are for every q € Q linearly independent which means they
generate the whole R®. For every q € Q we can construct a transition matrix from the
eigenvector basis to the canonical basis. This matrix, denoted by R(q), has the eigenvectors

r1(q), r2(q), r3(q), ra(q) and r5(q) as its columns:

1 1 1 1 1
u—=c u u u u—+c
(2.248) R(q) = v v v—c v v
w w w w—_c w
V2 62 V2 V2 V2 V2 C2
T trg—ue T T ouve Fowe G+ gmptuc
Its inverse has the form
% ((l~a—21)v2 + UC) _ c+u(2n—1) _ v(n2—1) _ w(n2—1) KT_l
1 c2—c(v+w)—(/<a—1)"72 ulk—1) c+v(k—-1) c+wk-—1) 1—&
R™(q) = = ve 0 —c 0 0
2
we 0 0 —c
% ((n—zl)v2 _ uc) c—u(;—l) _ v(n2—1) _ ’IU(KQ—I) anl

(2.2.49)

Let us denote A(q) = R™*(q)A(q)R(q) and present it:

14



u—c 0 0 O 0
0 w» 0 0 0
(2.2.50) Alq) = 0 0 w 0 O
0 00 w O
0 0 0 0 wu+ec
2.2.5 Rotational invariance of the Euler equations
Theorem 2.2.1
Let a, 8 € (0, 2m),
1 0 0 0 0
0 cos(a)cos(B)  sin(a)cos(B) sin(B) 0
(2.2.51) T(a,8)=1] 0 —sin(a) cos(a) 0 0
0 —cos(a)sin(8) —sin(a)sin(B) cos(8) 0
0 0 0 0 1

and let f, g, h: @ — R® be the functions defined in section 1 Then it holds

(2.2.52)  cos(a) cos(B)f(q) + sin(a) cos(8)g(q) + sin(B)h(q) = T~ (a, B)f (T(a, B)q)

(2.2.53) —sin(a)f(q) + cos(a)g(q) = T~ '(a, B)g (T ( B)a)

(2.2.54) — cos(a)sin(B)f(q) — sin(a) sin(B)g(q) + cos(8)h(q) = T~ (a, B)h (T(a, B)q) .
)

ng()andDh C(q

D it holds further
q

Under the notation

( C(;S(a) cos(B)A(q) +sin(e) cos(8)B(q) +sin(8)C(q) = T~ (a, B)A (T(a, B)a) T(a, 5)
2.2.55

(2.2.56) sin(a) A(q) + cos(a)B(q) = T (a, 5)B (T(a, f)q) T(«, B)

( —)COS(a) sin(8)A(q)—sin(a) sin(8)B(q)+cos(8)C(q) = T~ (a, B)C (T(a, B)q) T(a, B).
2.2.57

where the matrix A was defined in 2.2.1.

Proof: The matrix

(2.2.58) —sin(a) cos(a) 0

—cos(a)sin(8) —sin(a)sin(8) cos(B)

is a rotational matrix in R®, To™!(a, 8) = TOT(a,B), which means T™!(a, 8) = T (o, B).
Now it is easy to verify the validity of (2.2.52), (2.2.53), (2.2.54) and consequently the
validity of (2.2.55), (2.2.56) and (2.2.57).

cos(a)cos(B)  sin(a)cos(8)  sin(B)
(a, ) =

15



2.2.6 Hyperbolicity of the Euler equations

Definition 2.2.2
The system of the Euler equations is hyperbolic if for every q € Q, v = (1/1,1/2,1/3)T €R?
the eigenvalues of the matrix

(2.2.59) P(q,v) = ﬁ—:(q)ul + DE @+ pelas

are real and this matrix is diagonalizable.

Theorem 2.2.3
The system of the Euler equation is hyperbolic according to the previous definition.

Proof: If v € R? was equal to the zero vector, the previous definition would be satisfied. In
the opposite case let us express v in its polar coordinates: r(cos(a) cos(8), sin(a) cos(8), sin(8))”,
where r # 0 and «, 8 € (0, 27). According to (2.2.55),

P(q,v) =T (a, B)A (T(a, f)a) T(, B)

and consequently

det (P(q, v) — uI) = det (rT~"(a, )A (T(a, /)q) T(a, §) — uI) =
= det (T (a, 8) (A(T(@, B)a) — £1) T(a, B)) = r7det (A(T(a, B)a) - £1).

r

According to (2.2.33), the eigenvalues of A(q) are real for all g € Q. Hence, the eigenvalues
of P(q, v) are real for all q € Q and for all v € R3. It remains to verify the diagonalisability
of P(q,v).

Let us set Q(q,v) = T (a, B)R(T (e, B)q), where R(q) was defined by (2.2.48). Then

Q_l(qa V)P(qa V)Q(qa V) = rdiag (’\1 (T(aa B)q)7 A2 (T(aa B)q)7 LR As (T(a7 IB)q)) )

where A\ (T(a, 8)a), A2(T(a, 8)q), - - -, As(T(a, B)q) are eigenvalues of the matrix A(T(a, 5)q)-
Hence, the matrix P(q, ) is diagonalizable.

2.2.7 Riemann invariants

Definition 2.2.4

Let us suppose that the matrix A(q) from (2.2.25) is an element of C(Q, Lin(R®)) and that
its eigenvectors from (2.2.43) ... (2.2.47) r1(q),r2(q),...,rs(q) are elements of C(Q,R%).
Riemann invariants are functions ¢*) € C'(Q, R) satisfying

(2.2.60) VP (q) re(q) =0  k=1,2,...,5

for every q € Q. For every q € Q, the condition (2.2.60) can be satisfied by at most four
functions 11 ® (q), 5’“) (@), ¢s* (q), ik) (q), gradients of which are linear independent for
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every q € Q. Now it will be our aim to find them.
To search for the Riemann invariants means to solve a first order partial differential equa-
tion. In our case we succeed using the First Integral Method. Let us show the technique at

the simplest eigenvector of A(q).

We are solving the equation

(2.2.61) V51 (q) -r2(q) =0 (k=2)
i.e.
o oy o o oY g% + g5? + g4
+— ()@ + + + =0.
o0 (@a %% (@)g2 90 (a)g3 o0 (4)gs 9 (a) o™

(2.2.62)
We want to find a smooth function £ : @ x (0,00) = Q in order that
061 _ 06 _ 0&3 _ 04 _ 0& @+t
5 (q,t) = q1, 5t (a,t) = g2, 5t (q,t) = g3, 5 (q,t) = g4 and 5 (q,t) = B TR
The solution is

&i(a,t) = qit +91(q)

&(q,t) = got +Y2(q)

£3(q,t) = gst +93(q)

&a(q,t) = qat +Y4(q)

2 4 a2 4+ gu?
&(a,t) = Tt 495 (a),
q1

where 9 € C!(Q, R) is an arbitrary function respecting the condition £(q,t) € Q for (q,t) €
Q x (0, 00).

It is easy to show that any function ¢ € C'(Q, R), which satisfies %(cp o0¢)(q,t) =0,1is a
solution to (2.2.61):

— d B 5 6@ dé‘l 5 6§Z dq aé-z )
- g#9lat =3 5L iean) z : (6—q(q,t)— + % t)> _

8§z _ 680 8 890 Q2 +(I3 +Q42
2 o S@ D) 5 (at) = 5—q1(5(q,t))q1+6—q2(§(q,t))q2+...+6—q5(§(q,t))T.

Now let us give some examples. Setting 9¥(q) to be identically zero, we have

. T
¢@? + g% + q42>
2

§(q,t)=t(q1, @, g3, q4,

Having chosen ¢(q) = Z—f, we have ¢(&(q,t)) = Z—f = u. Having chosen ¢(q) = g—f we get

2 2 2
v(é(a,t)) = %%ﬂ = 1v? and so on.

Now let us present all obtained Riemann invariants. The reader can verify them and find
the appropriated functions ¢(q) and ¥(q).
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1. eigenvalue \i(q) =u —¢

T
. 2 2
eigenvector r1(q) = (l,u —cv,w, % + 55 - uc)

D) =v
§(q) = w
¥ (a) = p/o"

2. eigenvalue A2(q) = u

T
eigenvector ra(q) = (1,u,v,w, "72)

P(q) =p
(@) = u
(q) = v
P (@) = w

3. eigenvalue A3(q) = u

T
. 2
eigenvector rg(q) = (17 u,v — c,w, % — vc)

(q) =p
5 (@) = u
@) =v—2¢
i (q) = w

4. eigenvalue As(q) = u

T
. 2
eigenvector rq(q) = (1, u,v,w—c, % — wc)

W) =p
5 (q) = u
%2 (@) =v
4 (Q) =w—2c

5. eigenvalue As(q) =u+c¢

T
eigenvector r5(q) = (l,u +¢,v,w, "; + 621 + uc)

K—

P(q) =
() = w

¥ (q) = p/o"
D) = u— 24

You can easily make sure that the corresponding gradients are linear independent for all
qe Q.
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2.2.8 Integration of the matrix A eigenvectors

A very useful property of the Riemann invariants is that they stay constant along every
smooth curve in Q, to which the corresponding eigenvector of A(q) is tangential at every
its point.

Theorem 2.2.5
Let q = q(§), € € (a,b), where a,b € R and a < b, be a smooth curve in Q such that

%@zm@m

for all £ € (a,b) where ry(q) is one of the matrix A(q) eigenvectors, k € {1,2,...,5}. Then
any of the Riemann invariants ¢)(¥) is constant along this curve, i.e.

(2.2.63)

(2.2.64) M (§(¢)) = v (G(a))
for all £ € {(a, b).

Proof: It is very easy to see that

12 @©) = VsV @(©) - S0 = Vv @(©) -nl@@) = o.

Remark 2.2.6

These curves are very important because informations about physical quantities in the form
of the Riemann invariants propagate along them into the domain. We will see later that
direction of the propagation depends on the sign of the corresponding matrix A eigenvalue.
At this moment we will not dwell on this interesting subject — we will wait until the section
where the boundary conditions are treated.

Our recently found Riemann invariants and the matrix A eigenvectors are so simple that
we are able to express the above curves explicitly.

Let p € Q. We prove the existence of such unique curves g, q?,...,q® € C*(RT, Q)
that

dq®) (k) +
(2.2.65) d—f(g) = rk(q'"(¢)) £€ER
(2.2.66) q® (p1) = p,
where k = 1,2,...,5. Let us consider the simplest case again, i.e. the eigenvector r2(q) =

T
(l,u,v,w, ";) . Equation (2.2.65) gives the following system of five partial differential

equations
dgf” . _ dg” o a”©  di” . dP©  d? o ad”© nd
@7t 0w eV mg T T g
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i o) _ @O +@"©) +6"©)
dg 2" (¢) '

Its solution is

C§+C§+C§)T
) I

a?() = (§+01, Cale +Cr), Co(E+Ch), Cal€+Ch), Cs+€

According to (2.2.66) we find that

(2)
=0, G =(p), Cs = u(p), Co=f(p) and Gy = 1P,

When we try to construct a similar system to another eigenvector, we see that it is too com-
plicated. Therefore we must take use of having no necessity to know the general solution.

T
Let us present this technique at the case of the eigenvector r5(q) = (1, U+ ¢, v, w, "72 + ;_21 + uc) .

We denote sf") = ¢§5) (p), sg’) = ¢§5)(p), e, sg’) = ¢§5)(p).

(5)
It holds d(qu () = 1 and according to (2.2.66) we obtain q§5)(§) =¢.

The corresponding Riemann invariant must stay constant along it, i.e.

k=1

7 =i @) v = L and @) = Vsl o(a()

k—1
2

w(@®(¢) = s + &c(q(f’) ©) = s + 1 ksy o(a® (€))

Using correspondence between physical and conservation variables we obtain

(O = ula® ©) = &) + s
05 (€) = €0(a? () = &5t
¢ () = Ew(@® () = &5

For the last component it holds

(5) wlad® (N £ v(a® (EN? + w(a® ()
qé‘”(ﬁ)=E(q‘5’(£))=p(25_(f))+9(q(5’(£)) @™ (€) +v(@ () +w@™ () _

2
0@ (€)" 2500 @)" () + 6 + ()2
k—1 (k—1)*

+——s{\/ 555 o(® (€))
and finally

k41
2

+ 2 k—1
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2 2
)+ (sP) + ()

2

3k —1 2
— sg’){" +—
(k—1) K

1
In the remaining cases we proceed in the same way. Let us now present all obtained curves
in their explicit form:

a7 (€) = s\ s+ ¢

T
Curve corresponding to r1(q) = (1, U= C,v,Ww, "; + ncjl - uc) :

g =¢

2
076 = &5l - /sy e
(€)= €1

43
6" (€) = &3
2 2 2

(1) (1) (1)
1 3k—1 () 2w, [ et o (s47) (1) +(s57)
qé)(£)= (m—1)283 En_ﬁ_154 ks &7 +¢ 12 2

T
. 2
Curve corresponding to ra(q) = (l,u,v,w, "7) :

) =¢
@57 (6) = &5
§?(€) = &5
6i”(€) = &1

2 2 2
@ 8D N+ )+ (52
: .

T
Curve corresponding to r3(q) = (1, U,V — ¢, W, "; — vc) :

2

2 2
2P —2k+1 (353)) + (s§3)) + (353))

k—1

qég)(@ sg?’) + 23&3) fesg?’)f% + £
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T
Curve corresponding to ra(q) = (1, u, v, w — c, v wc) :

a"©=¢

" (€) = &5t

" () = ¢sg)
ai"(6) = & +2y/ns{Veh

(4) 252 — 25+ 1 (4) () (4 (s ()) +(8§4))2+(sg4))2
g () = — e _1 % T2 € +¢ 2 .

T
Curve corresponding to rs(q) = (1 u+ ¢,v,w, 22 p ) :

g =¢

() L 2 [ )it
(5) €s4 m—l ksy &
a5 (€) = &)
¢ (€) = &5

) + () + (s8)°
2 9

B)py _ k=1 (5) 4
as (E)_(m—1)283 14 +—/<a—1

where s( ) = ¢(k)( ) for i = 1,2,...,4 and k = 1,2,...,5. These curves are infinitely
smooth in RJr for parameters from R* they lie in the admissible state set and they are
determined by (2.2.66).

'953 § +¢&

Remark 2.2.7

For future explanation we need to know how the matrix A(q) eigenvalues behave along the
above computed curves. In a similar way as before we obtain

M@ (©) = (@D () — ela® () = s — ZF1 sl

(@ ©) = u@?(©) + (@ (©) = o + 7 /rsle T

We see that only A1(q) and A5(q) can change their sign along the corresponding curves.
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Theorem 2.2.8
Let p1 and p2 be two different points in Q. Let zpz(k) (p1) = ¢§k) (p2) where i = 1,2,...,4
and k € {1,2,...,5}. Then they are connected by a curve q'*

Proof: Let us fix a & € R™ and let us suppose that p; and p2 lie on different curves.
The explicit form of the curves allows us to see that they cut each other with the parameter
value &. But we know they are unique. Hence, p; and pg are connected by a curve q(F)
which contains the point q(*¥)(&)).

Remark 2.2.9

When we know these four invariants, we have a curve in the admissible state set Q.
Additional knowledge of the density gives us a unique point. You notice that here the
r1(q),z1(q),z2(q),z3(q), rs(q) eigenvector basis of the matrix A(q) from subsection 2.2.3
fails.

2.2.9 Optimal path in the admissible state set

Let qr, qr be two different states in Q. Our aim is to find a continuous path from qy, to
gr in Q the parts of which are parts of geometrical images of the curves q(*), ..., q®.

We are looking for four states qa,as,qc and qp in Q so that

a(er) = ar, aV(e4) =a®(0a) =aa, a?(es) =a®(es) =as, ..., 4 (er) = ar,

where g7, is the density corresponding to the state qr etc. The situation is shown in
Fig.2.2.10 (here @®) means the geometrical image of q¥) k =1,...,5).

Fig.2.2.10

We have five curves and for each one of them we know four Riemann invariants. Hence, we
can write down the following twenty equations:

(1)(qL) z( )(qA) i= ) '74
(2)(qA) = z()(qB) i= 7"'74
W) = Wac) =14
vac) = ¥’(ap) i=1,...,4
¢(5)(qD) z( )(qR) i= ’ '74
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.__..
®

(a) v, = VA

© wr = wa

(c) pL/ef = pa/di

(d) ur +2cr/(k—1) = ua+2ca/(k—-1)

(e) pA = DB

(f) ua = UB

(g) VA = UB

(h) wa = WB

(4) pB = PC

(.7) up = uc¢

(k) vB—2cB = vc —2cc

(l) wp = w¢g

(m) pc = Pp

(Tl) uc = Up

(O) Vo = Up

) we — 260 = Wp — 26D

(q) Up = UR

(T) wp = WR

(s) pp/eh = pr/ok

(t) up—2cp/(k—=1) = wur—2cgr/(k—1)
By the remark 2.2.9, the solution to this system (the intersection states qa,...,qp) is
unique. Curves 'V, ..., q® need not to be ordered this way, but any permutation leads to

much more complicated relations.

Let us denote

1

SR\ >* k—1 k—1

s =p/o", az(—R> , 2L = ur, +cr, and zg = UR — CR.
SI, 2 2

According to (e)(¢)(m)

¢h _Ppea _ 4

¢4 paop op

2 k—1 k—1
zzggzﬁ(@) :@g
¢4 DPAOL SA \04 04

From (c)(e)(i)(m)(s) it follows

Equation (c¢) yields

SLO"\ = PA =PD = SROD,

Sp\* . c s
24 _ (—R) =a®> and 2= (—R> =a.
oD SL CA SL

24

hence

=
#l-



We can rewrite equations (d) and (t) as

Fu—1+ q k—1
c an ZR=1U
2 A R D

2 =UA —¢p.

According to (f)(4)(n)
2L —2r=ca+cp =ca+acyg = (1+a)ey,

hence
2
2L — 2R ca\ "t 0A
(2267) ca=—7"% cp=oaca ea=cr (E) and  op = .
From (d) it follows
G- ea)
usg = ZL — ¢
a=_——7leL —ca

and according to (f)(j)(n)(a)(q)(b)(r) we obtain

up = U4, VA4A=0v[, Up=VR, wWa=wy and wp = wg.

Further, it remains to specify the states qg and qc:
According to (f)(g)(h)

up =u4, vp=wvr and wp =wr.
Equations (n)(o)(I)(h) yield

uc =up, v¢=vr and w¢ =wg.
From (p) it follows

wr — WR

(2.2.68) wr —2cc =wgr—2¢p ie. c¢c=cp+ 2

According to (k)
VL — 2cp = VR — 2¢c = VR — WL + WR — 2¢p

and therefore
VL — VR wyp — WR

(2.2.69) CB 7 2 + ¢p.
From (e) it follows ,
(2.2.70) gAcz, = chzB ie. o= (Z—;) 0A-
Analogously, the equation (m) gives )
(2.2.71) opch = pccy,  and g0 = (Z—g) op.
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In the end it remains to make sure that the computed states lie in Q. Before we do this, let
us make an important remark.

Remark 2.2.11

As we mentioned in the remark 2.2.7, eigenvalues A; (q(V)(€)) and A5(q® (€)) can change
their signs. Here the value |u| is equal to the speed of sound. Therefore we call them sonic
points.

a) Along the curve q(V) (¢):

s S

up =c and ¢§1)(QL) = ¢,§1)(qi) i=1,...,4,

hence
ur+2cr/(k—1) = ui+2c5/(k—1)
zZr, = "THCSL
¢ = 2z/(k+1)
Further s
pPL Pt
v; =wvp, wj=wp and = =
g g of (o))"

and consequently

b) Along the curve q® (¢):

up=—cp and PP(as) =p{7(@§) i=1,....4
Analogously as in the previous case

UR — QCR/(K, - 1)

uf, — 204 /(s — 1)

s = i,
¢y = —2zg/(k+1)
Further ,
PR Pr
vhE =vR, wWHr=wgr and — = .
R R Q% (0%)5
Finally

2
cs k—1
0% = or (—R) -
cr

The state q is admissible if and only if ¢ > 0 and p > 0. The speed of sound is defined as a
positive quantity. From the condition ¢4 > 0 we obtain
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k—1
2

In case this condition holds true, by (2.2.67) we have g4 > 0 and gp > 0. From the condition
coc > 0 and (2.2.68) it follows

(2.2.72)

(up —ugr) +cr +cr > 0.

o k—1 wr, — WR
2.2. - _ .
(2.2.73) ar1 ( ) (ur, UR)+CL+CR>+ > >0
The relation (2.2.71) yields pc > 0. According to cg > 0 and (2.2.69) we also have
a k—1 VL —VR | Wp —WR

In case this condition is satisfied, by (2.2.70) also g > 0.

By the previous explanation, qr, and ga being admissible implies qi being also an
admissible state. Analogously, the state qf, is admissible. In case the flow in the domain
Q contains no shocks, we immediately see that we can construct such a fine mesh that
conditions (2.2.72), (2.2.73) and (2.2.74) are satisfied. For a flow containing shock waves
this particular problem remains still open.

2.3 Riemann problem

In this paragraph we will deal with the one-dimensional Riemann problem. Its approximate
solution is an essential part of almost all numerical schemes for the solution of the Euler
equations. It will also play an important role in our case.

Definition 2.3.1
Let n be a natural number, f € C1(R"). We call Riemann problem the problem given by a
general hyperbolic system

0 0
.3. — —f t)) =
(2375) 9 awt)+ L t(ax, ) = 0
for almost all (x,t) € R x R with the initial condition
qr : z <0
(2.3.76) q(z,0) = )
qgr: z>0

where qr, qg are arbitrary constants and q(z,t) € R" for (z,t) € R x R™.

Remark 2.3.2
System (2.3.75) is hyperbolic if to the matrix

A@:%@
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another real diagonal matrix D(q) = diag(A(q),X2(q),...,A\n(q)) and a regular matrix
R(q) exist such that

(2.3.77) A(q9)R(q) = R(q)D(q) for all q € R™.

Columns of R(q) are the matrix A(q) eigenvectors and the diagonal elements of the matrix
D(q) are the corresponding eigenvalues. We consider the eigenvalues ordered in the same
way as in subsection 2.2.2;i.e. A\;(q) < A2(q) < ... < A (q).

Theorem 2.3.3
In case there is a unique solution to the Riemann problem (2.3.75) (2.3.76), it can be written
in the form q(z,t) = ¢(z/t).

Proof: For any a € R" we set qu(z,t) = q(az,at), where q = q(z,t) is a solution to
the Riemann problem (2.3.75) (2.3.76). The function q,(z,t) is also a solution, therefore
q(z,t) = qu(z,t) = q(az,at) for all @ € RT and (z,t) € R x RT. Let t € R", then for
a=1/tis q(z,t) = q(z/t,1) for all z € R. Hence, we can set §(£) = q(&,1).

Lemma 2.3.4:
For n = 1 let us consider the Riemann problem (2.3.75) (2.3.76) with the flux f(q) = aq,
a € R. Then there exists its unique solution in the form
(2.3.78) q(z,t) = qr(1 — H(z — at)) + qrH (z — at).
The function H : R — R is defined by the relation

0: =x<0

H(z) =
1: z>0

and it is called Heavysider shock function.

Proof: The equation has the form

0 0
aq(xat) + aa_xq(xat) =0

and its solution is constant along the characteristics z(t) = at + ¢, where ¢ > 0 and ¢ € R.
For (z,t) € R x R™ it is

qr : rz—at <0
q(z,t) = q(z — at,0) =
qr : z—at>0

Lemma 2.3.5:
Let us consider the Riemann problem (2.3.75) (2.3.76) with the flux f(q) = Aq, where A is
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a constant diagonalizable real matrix of the form n x n, Let r1,rs,...,r, be its eigenvectors
and A\; < A2 <... < )\, the corresponding eigenvalues. Vectors qr.,qr can be expressed as

n n
(2.3.79) ar = ) air;, ar =Y Biri
i=1 i=1
and there is a unique solution to the Riemann problem in the form
(2.3.80) qz,t) =Y (ai(l = H(z — \it) + BiH(z — \it)) 1.
i=1

Proof: The system (2.3.75) is hyperbolic and its linear independent eigenvectorsry,ro, . ..

generate R". Vectors qr,qgr can be written as a linear combination

(2.3.81) a(z,t) = > &, )y,

i=1
where & : Rx Rt - R, i =1,2,...,n. According to (2.3.75) we obtain

— [9& o&i
2.3.82 —= i— (z, i = 0.
(2.3.82) ;[&(x,t)maw(xt)]r 0
Linear independence of rq,rs, ..., r, implies
3 0 _
(673 <0
&(.’L’, 0) =

Bi: x>0
fori=1,2,...,n. Lemma 2.3.4 implies that
(2.3.83) &i(z,t) = a;(1 — H(x — \t)) + BiH(x — \it) 1=1,2,...,n

is a unique solution to this problem. Putting (2.3.83) into (2.3.81) we obtain (2.3.80).

In the following paragraph we will need to know the value of f(qgr(0)), where qr(z/?)
is the solution to the Riemann problem (2.3.75) (2.3.76). Since we are not able to solve
a general hyperbolic system, we must try to find a good approximation fr(qr,qgr) of the

value f(qgr(0)). The function fr : R x R" — R" is an approzimate Riemann solver.

Let us consider the scalar Riemann problem. In case f(g) = ag where a € R is a constant,

the lemma 2.3.4 for ¢ > 0 leads to

q(0,t) = qr.(1 — H(—at)) + qrH(—at) = qr H(a) + qrH (—a).
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Let us denote at = max(a,0), a~ = min(a,0) the positive and the negative part of a,
respectively. The exact Riemann solver has the form

fr(4ar,qr) = aq(0,t) = atqr + a”qg.

In the nonlinear case it is difficult to express the solution to the Riemann problem.
According to (2.3.75) we know that the solution is constant along the characteristics z(t)
satisfying

de(t) df
Hence, if
%(q) >0 for all ¢ € R,

the exact Riemann solver has the form

fr(qr,qr) = f(qr)

and in case

df

a4 (9) <0 for all ¢ € R,

s Ir(qr,qr) = f(qr)-

This result motivates the splitting of f(q) to its positive part f(g) and its negative part
f~(g) in such a way that for all ¢ € R it holds

f@Q=r"@+75

%(q) >0 and dfT_(q) <0.

We consider the approximate Riemann solver in the form

(2.3.84) frlqn,qr) = f*(q) + f~ (qn)-

Now we return to the vector Riemann problem (2.3.75) (2.3.76) again. Let R be the
matrix the columns of which are the eigenvectors ry,rs,...,r, of the matrix A and D =
diag(A1, As, - .., An) the diagonal matrix as mentioned above. Let k be a natural number
such that A1 <X <... <A <0< Agg1 <... <Ay, By the lemma 2.3.5

k n
q(0,t) =Y Biri+ Y air
i=1

and =k+1
k n

(2.3.85) £(q(0,1)) = D Bidiri + D aikiri.
i=1 i=k+1
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Further, we define diagonal matrices

Dt =diag(\f, AT, .. A D™ =diag(A\], A5, .- -5 A;) D| =D -D~

+ _RDFR-L - _RD R-! At A
and matrices A = RD"R A" =RD R Al = AT - A",

We see that the matrix At is similar to the matrix DT. Therefore they have the same
eigenvalues. Eigenvectors of D are identical with the canonical basis vectors, which means
the eigenvector set of AT is identical with the eigenvector set of the matrix A. In case of
the matrix A~ the situation is analog(:lus. Using (2.3.n77) and (2.3.79) we obtain

Afq = Zaz’/\jrz’ = Z QT
i—1 i k1
1 2 k+

A qr=) BiNTi=) Bilri
i—1

i=1
According to (2.3.85) the Riemann solver has the form

(2386) fa(as,ar) = A*(au) + A~ (ar) = £ (Alaz) + Alar) — [Al(ar - az).

Let us now consider the Riemann problem (2.3.75) (2.3.76) for a general nonlinear system.
Having resolved the scalar and the linear case, we can do the following heuristic generaliza-
tion: We set

(2.3.87) fr(ar,ar) = f(ar) + £~ (ar),
where functions f+,f~ : R® — R" satisfy
(2.3.88) f(q) = f*(q) +f (q), for all g € R" and
+
(2.3.89) %(q) has no negative eigenvalues
Df~ i .
(2.3.90) D—q(q) has no positive eigenvalues.

Of course, this flux splitting is not unique and can be done in many different ways. In
our paper, we will develop the Osher-Solomon method.

Analogously as in the linear case, we define the matrices

D*(q) = diag(A{ (@), Af (@), ..., A} (@)
A; (q) n

D~ (q) = diag(\; (a), A3 (@) - Ay (@)
|D|(q) =D*(q) — D~ (q)
and
At(q) =R(q)D*(q)R™'(q
A|_(q) =R(q)D " (q)R'(q)



Let us assume existence of two functions f*,f~ satisfying (2.3.88) so that

%<q>=A+<q) wd D@ =A (@

for all ¢ € R". These functions satisfy conditions (2.3.89), (2.3.90) and they can be expressed
in the form

(2.3.91)

(2.3.92) ) = (q) + [ At(q)dq
(2.3.93) (@) =f(a)+ [ A (qda.

Putting (2.3.92) into (2.3.87) we obtain the approximate Riemann solver

qrR

(2.3.94) fr(ar,qr) = f(qr) — A*(q)dq

qar
or equivalently

fular,a) = flar) + [ A(@da= 1 (fan) +flan) = [ Al@da).

qar qaL

Unfortunately, functions fT and £~ do not exist in general and the above written integrals
depend on the trace in R".

2.4 Approximate solution to the Riemann problem

In this subsection we are going to construct the numerical flux ®(q;(t), q;(t), vij, u2(9;;))
which approximates the integral (2.1.21)

(2.4.95) / f(q(x, t))l/ij 1T g(q(x, t))l/ij2 + h(q(x, t))uij3dS

89,']'
using values q;(t), q;(t) obtained from the function q(z,t) on elements €;,Q;. The normal
vector v;; from (2.4.95) can be expressed in polar coordinates:

(2496) Vij = (COS Q5 COS ,Bz'j, sin Q5 COS ﬂij; sin ,Bij)T,

where a;; and 3;; are angles, which the normal vector forms with the zz and yz axis planes,
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respectively. According to (2.2.52) we can rewrite the integral (2.4.95) as
(2.4.97) T(aij, Bi) ™ £(T (o, Bij)alx, t))dS.
891']'

For simplicity, we denote T (aj;, 8;;) by the symbol T;;. We will approximate the integral
(2.4.97) by the value

(2.4.98) p2(092:5) T~ £(Ti5q5 (1)),

where q;;(t) is a suitably chosen approximation of q(x,t) on the side 0€Q;; of the finite
volumes Q; and Q; depending on q;(t) and q;(¢). Our main aim now is to find this approx-
imation. Let us fix a time point ¢ = ¢' and denote q; = q;(t'), q; = q;(t') and q;; = q;;(t').

Since the system of the Euler equation is very complicated, we would not succeed by
using such simple approximations as linear combinations of q; and qj etc. To construct a
good scheme for solving it, we must use some deeper knowledge.

Let us construct a new local coordinate system. Its origin lies somewhere inside 0€;;
(not important where, it can be its center for example) and the outside normal vector v;;
has in its new coordinates the form

- T
Vij = (17 05 0) .
Here is the transformation rule:

(2499) X—0= Tij (X - 0).

In this relation x means global coordinates, X local coordinates, o is the origin of the local
coordinate system in global coordinates and o the origin of the local coordinate system in
the local coordinates (i.e. (0,0,0)").

It holds

(2.4.100) q(x,t) = Tijq(x,1).

The matrix T;; is specified without taking care of rotation around the normal vector v;j,
which does not matter to us since we are solving the one-dimensional Riemann problem in
the normal direction.

The equation (13) has in the local coordinates the form

0., 0 .-, o .. 0. . .
(24101) aq(xat) + %f(q(xat)) + 6_yg(q(X7t)) + &h(q(xat)) =0
again due to (2.4.100) and the regularity of the matrix T;;. Relation (2.4.98) yields

(2.4.102) p2(095) Ti; ~ £(di5),
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where the value q;; = T;;jq;; can be understood as an approximation of q(0,t') depending
on q(X,t') = q; for # < 0 and q(%,t") = q; for £ > 0. We neglect the dependence on § and
Z since our approximation remains constant near the origin.

The appropriate Riemann problem to the equation (2.4.101) is

0 0
2.4.1 —§(% Zfa(s —
(2.4.103) 5:4(&:t) + 5-£(4(3,1)) = 0
for (£,t) € R x (t', 00) with the initial condition
qi: <0
(2.4.104) aq(z,t') = ,
q: >0

where § : R x (t',00) = R°. By the theorem 2.3.3 the solution to (2.4.103) (2.4.104) can be
expressed in the form §(Z,t) = qr(Z/t). The value §(0,t) = §r(0) is therefore constant for
all t > ¢ and it seems suitable to approximate q;; by qr(0). Substituting this in (2.4.102),
we obtain an approximation of the integral (2.4.95) in the form

(2.4.105) 112(0;) T35~ £ (@R (0)).

Correspondingly to what we said in section 2.3, we will approximate the value f(§g(0)) by
the approximate Riemann solver fg(T;;q;, T;;jq;) which was defined by the relation (2.3.94).
Now we have the numerical flux

(2.4.106) ®ij(ai, q5) = N?(aﬂz’j)Tz’j_lfR(Tijqia Tijq;)
where

qdRrR
(2.4.107) fr(qu,qr) = f(qr) — / AT (q)dg

or equivalently ax

(24108 fn(an,an) = flan) + [ A(@da = (@) +flaw) - [ Al@)da).

qL qL

We can approximate them heuristic by a suitable numerical quadrature or compute them
along a suitably chosen curve in R".

The most popular schemes obtained as a result of numerical quadrature are
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the Vijayasundaram scheme:

ar +
|7 Al @da AT (29 (ar - an)
qL

lamm+me»zf(

QL+QR) _A<QL+QR> qL + qr
. wtar) _
qr
qL +q
/|M@m~m(i—ﬁy%—%)
q

2 2 2 ’

the Van Leer scheme:
L 2

and the Steger-Warming scheme:

9dRrR

A" (q)dg~ A" (qr)(qr) — A" (qr)(qr)-

qL

There is a great disadvantage of this approach, namely the matrices A, A~ or At must
be computed for every side 0€);; in each iteration, which costs a lot of time. We are now
going to construct a scheme which does not need it.

2.5 Osher-Solomon numerical flux

Let qr, qr be two arbitrary states satisfying conditions (2.2.72), (2.2.73) and (2.2.74).
We have shown that it is possible to connect them with a unique piecewise smooth curve
described in section 2.2.8. We use this result now for the integration of matrices A(q),
A*(q), A~ (q) and |A|(q). Since (2.4.107) and (2.4.108) are equivalent, we can choose the
first of them.

aa 04 1
25109 [ At@da= [ AT@(E) @ -

oL

e

- AMm“mm@Wmﬁanﬁ@Wmn@Wm@=

erL er

oA

- MMMWmmmmwm@Wmﬁz/“mm@%&m@%mn@Wm&=

eL oL

qA qA Df

_ mh@m@m=/ H( (@) pe (@)da

qL L

The remaining integrals can be evaluated in a similar way. By the remark 2.2.7 the
eigenvalues A1 (q), As(q) can change their signs along the curves (¥ (€), q‘®)(€), respectively.
The eigenvalues \2(q), A3(q) and A\4(q) are constant along their curves. Thus,
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Ai(qr) > 0 and A(qa) >0

:A At(q)dq = /:A DD—Z(q)dq =1f(qa) — f(qu)

Ar(ar) > 0 and A\ (ga) <0

qa qy, Df
At(q)dq= Do @da = f(ai) — flar)
qL qL q
Ai(qr) < 0 and Ai(qa) >0
qA qA Df
At(ada= [ 5o (@da = f(ax) — f(a})

qL

Ar(ar) < 0 and A\ (ga) <0

Calculation along the curve q® (£) proceeds in a similar way.

As(gp) > 0 and As(qr) > 0

At @da= [ D (a)da = flar) — flan)
As(ap) > 0 and As(qr) < 0
- AT (q)dq = " D—f(q)dq = f(qk) — f(ap)

abp ap

As(ap) < 0 and As(qr) > 0

qRr qRr Df
At(q)dq=

dap agR

As(gp) <0 and As5(gp) < 0

The Riemann invariant u is constant along the curves q(®)(¢), q® (¢) and q® (€).
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Hence, A2(qa) > 0 yields
qap
/ A*(q)dq = f(ap) — f(qa)
qaA
and in case A2(qa) < 0, it is
qap
/ A*(q)dq=0.
qaAa

The last step is to add our particular results together:

qr

(2.5.110) At(q)dq =
qL
qaA qB qc qp 9dRrR
= At (q)dq+ At (q)dq+ / At (q)dq+ / At (q)dq+ / At (q)dgq
qL qA qaB qc qp

Substituting this term into (2.4.107) we get the Osher-Solomon approximate Riemann
solver fr(qr,qr) for all states qr,qr € Q satisfying conditions (2.2.72), (2.2.73) and
(2.2.74). The scheme is shown in Diagram 2.5.1.
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f(qr)

(w
f(ar) + f(ar) — f(ay)
R f(ar) + f(aa) — f(a})
w L A) — L
\ /( )< f(ar) + f(ar) + f(aa) — f(a}) — f(ay)
g f(qv) + f(ap) — f(ag)
w qL dp) — CIL
\(5)/( )< f(av) + f(ar) + f(ap) — f(ay) — f(ak)
\(w)< :<qL)+:<q;) ,:(q:L)
fr(ar,qr) = (a) (qL;+ (ar) —f(qg)

(w)< f(CIA;

f(ar) + f(qa) — f(ay)

™) lan)
dp
w
\(5)/( )< f(qR) + f(qD) - f(q;{)
\(w)< f(ag)
f(ar)

Diagram 2.5.1

Osher-Solomon approximate Riemann solver fr(qL,qr)

The following five conditions must be tested every time:

(a)...)\l(qL):uL—cL 20
B)...\(qa) =ua—ca >0
(7)-.-A2(ga) =uga >0

(0)..-Xs(gp) =up+cp=ua+ecp >0
(w)..-X5(qr) =ur+cr >0
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In the previous diagram, the direction upward means that the condition is satisfied. The
reader may notice that some conditions determine conditions following after them. At this
moment it remains to make sure the Osher-Solomon numerical flux is conservative and con-
sistent.

Theorem 2.5.2

The Osher-Solomon approximate Riemann solver fg(qr,qr) has the property fr(q,q) =
f(q) for every q € Q, which means that the numerical flux (2.4.106) is consistent (see the
relation (2.1.22)) with the differential equation (13).

Proof: Let qr. = qr = q. The reader can go through the solution to the system of equations
in section 2.2.9 now and make sure that qi, = qgr yields qa = q8 = qc = 9qp = qL.
Remark 2.2.11 implies that also qf = q§ = qr.. Conditions (2.2.72), (2.2.73) and (2.2.74)
for qr, = qgr are satisfied, which means it remains now only to put these particular results
into the Diagram 2.5.1. If we do it, we obtain

®(q,q,v,a) = aT (e, B)f(T(a, B)q) =

= a(f(q) cosacos 8, g(q) sina cos 8, h(q) sin §) =
= a(f(q)v1 + g(q)v2 + h(q)vs)
which verifies the relation (2.1.22).

Theorem 2.5.3:
The Osher-Solomon numerical flux (2.4.106) meets ®(q1,q2,v,a) = —®(q2,q1,—v,a) for
two arbitrary states qi,qa € Q satisfying (2.2.72), (2.2.73) and (2.2.74), for every v € R?

|v| = 1 and for every a € R". In other words, it is conservative if and only if it is defined
(see (2.1.23)).

Proof: We have to verify that
(2.5.111) T(a,8) ' fr(T(a, B)ar, T(a, B)az) =
= T(a + T, _/B)ilfR(T(a + , _B)an T(Oé + , _/B)ql)

for all 1,92 € Q and «, 8 € (0,27). Matrix T(a, §) was defined by the relation (2.2.51).
Setting qr, = T(«, 8)d1, ar = T(a, 8)q2 we can rewrite (2.5.111) as

(2.5.112) T(a +m,—B)T(a, 8) ' fr(qr,qr) =
= —fr(T(a+m,—B)T(a, 8) 'qu, T(a + 7, —B)T (e, ) 'qr)

and because of

T(a +m,—B)T(a, f)”" = T(,0),

39



the relation (2.5.112) can be written as follows:

(2.5.113) fr(qr,qr) = —T(r,0)” (T (r,0)qr, T(r,0)qw)
It is suitable to denote

qu = T(7,0)ar
2.5.114 -
( ) qr = T(m0)qr

now. The reader can easily make sure that T(w,0) = diag(1,-1,—-1,1,1), which yields
(2.5.115) 0L = Or, UL = —UR, 01 = —VR, WL = WR,PL = PR,CL =CR,
Or = 01,UR = —ur,0r = —VL,WR = WL,PR = PL,CR = CL

Analogously as for the states qr., qr in subsection 2.2.9 we obtain

F
- -1
2L = — 5 UR +Cr = —ZR
. k—1
Zp=— ur, —cL = —2g
2
- ZL —2Zr _ —ZrR+t L 2L — 2R
2.5.116 cA = = = =qaca =c
( ) R 1+1 1+ AT
(2.5.117) Cp = QCp =cy
0 k—1 0 k—1
% =Kk— = ksgpoly ' = a®kspof " (—R) =a%cl (—R)
oL oL
2
1 1 cp \ T ep\ "1
0D = 504 = — oL =\ —— OR
ot a? \ acy, CR
2 2
5 N NA k—1 CD k—1
0A = 0L\ = =\— OR = 0D
Ccr, CR
~ 0A ) _
0p = =5 =a’ep = 04
a
(25118) A= (51— 6a) = ——( )
5. g = ZL, —Ca) = —2R — QCA) = —Up = —U
a=——70r ¢ p— R A A D
(2.5.119) ip =iia
and U4 =9L = —VR = —VUp
ﬁD = 1~)R = —Vp = —Vyg
w4 =wWp =WR = Wp
’lﬂD = ’IIJR =W = WA



B - e
- ap = T(m,0)qa °

In case that the sonic points qf, or qg exist, the remark 2.2.11 says that also q§, or gz, exist,
respectively, and

wEZ’IﬂszL:wi

@ = QZR _ 221,
B™ k41 k+1 L

With the sonic point qf, we proceed analogously and find that

q;, = T(r0)ag

2.5.121 ~5 s -
(2.5.121) & = T(m 0

Let us now return to the scheme of the approximate Riemann solver again. Using rela-
tions (2.5.114), (2.5.120) and (2.5.121) for fr(qQr,Qr) we construct a scheme similar to the
Diagram 2.5.1. Conditions (a), (8), ..., (w) have now the form

R

(@)...A(Qu) =i — € >0
(B)..-M(Aa) =@a—¢a >0

() ---A2(qa) =4 >0

(). X5(@p) = fip — &p = fia — p > 0
@).--As(@r) =GR +Cr >0

Let us give a short explanation why it is not important whether conditions (a), (8), (v),
(8), (w) and (&), (B), ..., (@) are strict or not.

In case ur, = cr, the state qr, equals to the sonic point g . Analogously, in case ua = ca,
it is ga = qj,. There is a small difference in case u4 = 0 — we do not have qa = gqp, but we
know that u 4 is a Riemann invariant and stays constant along the curves q, q® and q®,
which yields up = 0. Now, according to the flux definition (14) we have f(qa) = f(qp). In

the end, in case ur = —cpg it is qr = qf and in case up = —cp, it holds qp = q%.
Conditions (&), (8), ..., (®) can be rewritten as (@), (8), ..., (@), which are equivalent
to (a), (B), ..., (w), respectively. The scheme with the solver fg(qr,dr) is shown in Di-

agram 2.5.4. Using (2.2.52) with a = w, 8 = 0, we obtain immediately that the equality
(2.5.113) is valid.
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(&') f(‘iR)
f(4r) + f(ar) — £(43,)

f(CIR f(dp) — f(ag)

\ / f(‘lR +£(qu) + f(@p) — f(ag) — £(ag)

f(ar) + f(da) — f(ag)

(8)/ f(@r) + £(a) + £(@a) — £(@g) — £(a)
~. - f(ar) + (@) — £(a5g)
( L R
)< f(gr) + f(ar) — £(ay)

fr(Qu,dr) = (&)

w)< f(dp)

/ f(av) + f(an) — £(a§)
(%)

Y
. £(da)
w
\(8)/( )< f(qL)_i_f(qA),f(qi)

\(w)< f(‘:li)
. HG)
Diagram 2.5.4

Osher-Solomon approximate Riemann solver fg(qL,dr)

(@)...A(Qr) =Gr+¢r <0

(B)..- (@) =tdp+ép=1a+¢ép <0
(9)---22(da) =04 <0
(6)..-A(Qa) =14 — €4 <0
(@)...M(Qu) =@ — ¢, <0

At this moment we have finished our search for the numerical flux through sides lying inside
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of Q. In the following section we will be concerned with the boundary conditions.

2.6 Boundary conditions

In this section we will deal with the choice of boundary conditions on the inlet and outlet
sides of Q to the system of equations (7). Let q(x,t) be a solution to the equation (13) in
the domain 2 x (0, 7). We restrict ourselves to a fixed time to € (0, 7). Linearized equation
(13) has the form

20122) 235 4 Afqlr 1) 2250 4 Bl 1) 2250 + Ol )

for (x,t) € 2 x (0,7). As you notice, we use our old notations

The function q(x,%) is given by the relation (2.1.18). Let us use the symbol B(q) for our
boundary operator. The boundary condition can be written in the form

(2.6.123) B(q(x,t)) =0

for (x,t) € 90 x (0,7) again. We consider a real element Q;, i € {1,2,...,N}, j €
{N+1,N+2,...,M} and its side 0;; C 0). Let us construct analogously as in section
2.4 a local coordinate system. Its z-axis is oriented in the direction of the outside normal
vector v;;. Equation (2.6.122) yields

o12) 230D 4 AGE ) 2D + BE W) LD + C@( 1)

aq(x,t)

0z =0

for (x,t) € 2 x (0, 7). We denote local coordinate system variables by the tilde again.

Let us proceed from (2.6.124) and (2.6.123) to the boundary Riemann problem

8€1($,t) ~ 6(](18,75) _ - +
(2.6.126) a(z,0) = a; <0
(2.6.127) B(§(0,t)) =0 t>0.

Here &; means §(X, to) restricted at €; and the operator B : Q — RP, p € {0,1,...,5}
represents a set of p prescribed boundary conditions, which is our aim to specify so that
problem (2.6.125) ... (2.6.127) has a unique solution.
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By the theorem 2.3.3 the unique solution to the boundary Riemann problem can be repre-
sented as §(z,t) = r(z/t), (z,t) € R~ x RT. This function is constant in time for = = 0.
Therefore it seems to be suitable to choose the value §r(0) as an approximation of (X, to)
on the side 9€;;. Let us denote i = qr(0).

Vectors q;, dp and the solution §(z, t) itself can be expressed in the matrix A(q;) eigenvector
basis:

5 5
(2.6.128) Zakrk ai) ab = Brrk(@) a(z,t) = > (e, )i (@),
k=1 k=1

where ay, B are constants and ¥ : R; x R§ — R for k = 1,2,...,5. Putting (2.6.128)
into (2.6.125) and (2.6.126) for k = 1,2,...,5, we obtain problems

0y, 0y, B _ 4
(2.6.129) 51 —(z,t) + \e(Q) =— o (z,t) =0 (z,t) e R~ xR
(2.6.130) I (z,0) = ay, z<0
(2.6.131) 91(0,t) = Bi t>0.

Here A\, (@:) are again the eigenvalues of the matrix A(qQ;). We know that the solution
Ui (z,t) to the equation (2.6.129) is constant along the characteristics z(t) = A\ (Qi)t + zo
(zo is an arbitrary constant). The situation is shown in Fig.2.6.1.

a) Ae(@i) >0 b) Ar(@i) =0 q
t
/ | | \ x
0

Fig.2.6.1
Characteristics of the equation (2.6.129) depending on A(q;)
For the solution ¥ (z,t) at (z,t) € R~ x R" it holds

i@ — Ar(@i)t, 0) T — (@)t <0
(2.6.132) I (x,t) =

(0, — 55y) z = Ar(@)t >0

Ak (41)
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and for A\ (G;)t > 0 we consequently obtain

(2.6.133) Iz, t) = 9 (z — M\ (Qi)t, 0).

In case A\(@i) > O there is no necessity to prescribe any boundary condition. In case
the eigenvalue is negative, the solution is specified only for such (z,#) € R~ x R that
z — Ap(@;)t < 0. We see it very well in Fig.2.6.1. Here a) shows how information is prop-
agated from the domain. In case the eigenvalue is zero, information neither is propagated
into nor from it. The last figure explains, why we need to prescribe a boundary condition
in case of the negative eigenvalue.

For (z,t) € R~ x R* and k € {1,2,...,5} we obtain

(2.6.134) if Ak(qi) > 0 then ﬁk(w,t) = Qay

ap for z— A(@)t <0
Br for x— Ag(qi)t >0 [~

If the number of the negative eigenvalues is p, relations (2.6.134), (2.6.130) and (2.6.131)
yield By = ay for k=p+1,p+2,...,5. The relation (2.6.128) gives

(2.6.135) if Ag(@i) <0 then ¥¢(z,t) = {

P 5
(2.6.136) ab =Y Ber(@) + Y, awri(@),
k=1 k=p+1
where (1, 82,...,0p are real constants. We see that the number of components of the the

solution vector which need to be specified by a boundary condition equals to the number of
negative eigenvalues of the matrix A(q;).

Of course, for practical applications it would be much more suitable to give directly some
components of the solution vector instead of 3y, but the choice of these components is not
trivial. Let us now have a short look at it.

In case p = 0 or p = 5, the situation is clear. In case p = 0 there is no need to prescribe
any boundary conditions - we set q, = q;- In case p = 5 we choose qp from Q arbitrary.
The rest is a bit more complicated. Under notation

T
a = (a1;a27a3;a47a5)

—R-1a\a
the relation (2.6.128) yields a=R"(q)d-

Here the matrix R(q) comes from (2.2.48). The reader can easily verify that

Qi T
=—(1,2(k -1 1) .
@ 25( ? (’i )70707 )

At first, we will analyse the case p = 1 using the following notation:

- . T
Qi = (0i, 0ili, 0i0;, 0;W;, E;)

. LB e SV T

ab = (06, 06Us, 0bTs, 06Ws, E)
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(5 _ 2KZB1 — 0;
29,’.‘-’{, )

Relation (2.6.136) yields

o+1
((5 + ].)ﬂ, - (501'
ab = 0i (0 + 1)o; )
(04 1),
((5 + ].)‘7—1 — 0uic; + G ro+l

2 k—1 K

2

where c¢; is the speed of sound and v;

state ;. Using (11) we obtain

square of the velocity vector corresponding to the

?k(k—1)

pb=(1+lﬁ(s—m

).

The state §p is admissible if its density § + 1 (as well as the corresponding pressure) is
positive. When & € (1, 3), this is equivalent to

—(k+1)+ /B —-1)(k—1)
k(3 — k) '
If we prescribed the density g5, we would also have &, 8 and consequently the boundary

state dp, but we would have to satisfy the condition (2.6.137). We would like to prescribe
some variables without taking care of others. If we prescribed 4, # @; — ¢;, we would obtain

(2.6.137) 5>

5= Ui — Up
- c; — g + Gy

We see that denominator of this fraction could become zero. Relation (2.6) says that @, = ¥;
and W = W;, which means we can’t prescribe them. What we can prescribe is the pressure
pp- The reader can easily verify that in case p; > 0,py > 0 and & € (1,3) there is a unique
d > —1 given by

2
g—g—(n+1)+\/(%) — 22 (5 —1)” + (k — 1)(3 — )
k(3 — K) '
This quantity specifies the boundary state qp,-

At this moment, what remains to be analyzed is the case p = 4. Let us introduce a new
local notation

_ 2Ii,8k
Qi

Sk k=1,2,3,4
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Y=01+62+0d3+6d4+ 1.

Substitution into (2.6.136) gives

¥
. Pa; + (1 —61)e;
(2.6.138)  gp= 2t V0; — d3¢;
2k 1911), - 54Ci
92 ~ ~ ~ c? ~ c?
5t — Ci(01; + 0375 + 0410;) + 5 + Gici * 01 7

and for the pressure

_ 2 2 2

Relation (2.6.138) further yields

o = 50
ﬂb = ﬂ, =+ —17951 C;
Bo= bi— 2
Wy = W — %ic
and in case that
26 - O =i~ - . S
2 — ?(ub —a;)(op —0i) > (k — Dk 2 L (i — i) + (T — 0;)% + (@6 — @i)?),
i -

k3

the pressure p will also be positive.

Prescribing three velocity components and the pressure we would get a restricting con-
dition again. If we wanted to give both density and pressure, the constants d1,d2,d3 and dy4
would not exist in general, because one of them would always be a solution to a quadratic
equation with possibly complex roots. We see that the specification of 81,082,083 and B4
requires to prescribe the density and three velocity components.

Now we could start investigations which further quantities (like speed of sound, entropy
etc.) we could prescribe. Since we do not think there is necessity to do it now, we proceed
to the next section.

2.7 Numerical flux through boundary sides

In the previous section we briefly investigated what variables can be prescribed at the bound-
ary of (2. Consequently, we are going to construct relations describing numerical flux through
a side 0€);; C 0f). Since ideas we will use in this section are similar to those from section
2.4, there is no need to explain them in detail as above.
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2.7.1 Inlet and outlet

We will to approximate integral (2.1.21) by the term (2.4.98) using again the complete
notation from section 2.4. The value T;;q;; will be approximated by §, = qr(0) again,
where §(x,t) = r(z/t) is an exact solution to the boundary Riemann problem

(2.7.139) %Q(x,t) + %f(q(:c,t)) =0 (z,t) e R™ x R
(2.7.140) a(z,0) =q; = Tij(qi) z<0
(2.7.141) B(§(0,1)) =0 t> 0.

Here the operator B:Q 5 RP p € {1,2,...,5} represents the p boundary conditions.
In case of the linearized problem number of prescribed boundary conditions equals to the
number of negative eigenvalues of the matrix A(q;). Our boundary state can be written in
the form

4 5 P
(2.7.142) @ =) Ber(@)+ Y, owric(@) = & + Y (B — an)ric(&i)-
k=1 k=p+1 k=1
Constants 31, 32, - - ., 85 are to be specified by the boundary condition. By (2.7.142) @; and
dpb can be connected by a piecewise linear continuous curve in R® consisting of abscissas
g, q®, ..., q® so that to every of them the appropriate eigenvector of A (§;) is tangential,
as follows:

q : (0,¢) - R® i=12,...,p
‘ ‘ a(0) = &
a9 (&) = g1 (0) i=12...,p-1

q(p) (Ep) = Qb.
These curves can be written for example in the form

j—1
q(J)(f) = éi.i + Z(ﬂk - ak)rk(qi) +£rj(ql) 5 € (Oaﬂj - ij) .7 = 1727 ey D
k=1

We will generalize this idea to the nonlinear system. Let us suppose that analogously as
in the previous case the states q; and {p can be connected by a piecewise smooth curve
consisting of parts of the curves g1, q?, ..., q®, which we defined in subsection 2.2.8.
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These curves must satisfy

(2.7.143) _ - q(0) =a
(2.7.144) q? (&) = qUt(0) i=1,2,...,p—1
(2.7.145) a'? (&) = ab.

There are p — 1 unknown states between q; and §p and every one of them contains five un-
known components. With further five unknown components of the boundary state g, € R®
we have 5p unknowns. Knowing that every one of the mentioned curves is accompanied by
four Riemann invariants and having p equations more from the boundary condition, we can
write a new system of equations. The solution is the unknown boundary state qp,-

Let us now analyze various situations which can appear at an inlet or outlet element of the
domain.

In case p = 0, it is @%; — ¢; > 0 which means the sonic or subsonic outlet. The equation
(2.7.142) yields qb = qi and

(@, @) = £@n) = [ A" (@)da =)

qi

In case p =1, it is @; — ¢; < 0 and @; > 0 which means the subsonic outlet. Remembering
Riemann invariants corresponding to the curve g, we easily obtain

Remark 2.2.11 says that the first eigenvalue of the matrix A(q) can change its sign along
the curve q(!). Since we prescribe only the boundary pressure py, we should verify whether
this sign change is possible. Relation

yields . 2

and consequently
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Analogously as in remark 2.2.11 we compute

@l =cf, ﬂf+ﬂ G =Ui+ ——¢
k—1,_ 2
i = Ii—-l-l( it — lcz)
pr = G P (@) e
’ K o KDi
and finally of = 9;, W{ = ;.
@ 0 A(dn) <0
; A" (q)dq =
Relation ~ . ~ N
& f(an) — £(af) A1(@p) >0
gives us the approximate Riemann solver
f(ab) A1(@p) <0
fR(di: Q.b) = 5
£(a5) A1(@p) >0

In case p = 4 we have u; < 0 and u; + ¢; > 0 which means the subsonic or sonic inlet.
Between the states q; and qp there are three intersection points and the curve, which we
will integrate along, consists of parts of the curves qV,q®,q® and q'*). There is only
one of these three states g = q(V (&1) = q®(0) important for us, because between it and
the boundary state §p the eigenvalue u of the matrix A cannot change its sign. According
to the results from section 2.6, the most suitable alternative is to prescribe gy, @y, U5 and Wy
and compute the boundary pressure p,. Remembering Riemann invariants corresponding to
the curves gV, q®, q® and q'¥, we immediately obtain

1
k-1 _ } Z0:\ 1 5
CH =¢C; + 2 (@; — 1), om= <£> Qi, PH=Q—H
KDj K

g = Up, Uy =7;, wg=w; and pHg = pyp.
On the curve gV, between §; and §p the sonic point q; can exist. Using q; and g we can

compute it in the same way as in the previous case. Having these results, we can start the
integration:

an 0 A1(@um) <0
/_ A*(q)dq =

E f(am) — £(af) Ai(gqu) >0

av 0 A2(@p) <0
A*(q)dq =

au f(aw) — f(am) A2(Gp) >0



The approximate Riemann solver fr(qi, dp) has the form

( f(qp) A (@r) < 0,X2(Gp) <0 )
f(aw) +f(a5) — f(am) A1(dnu) > 0,X2(4p) <0
fr(Qi,db) = < >
f(qu) A1(@u) < 0,X2(Gp) >0
L fa5) A(@m) > 0,X2(Gp) >0 )

In the following subsection we will occupy ourselves with the numerical flux through solid
walls.

2.7.2 Solid wall

To obtain a good description of the numerical flux through solid walls, we will not need to
solve any Riemann problem this time, although it would be possible. The integral

/89 fla(x, t))vij; + glax,t)vi, +h(q(x,1))vij,dS
defined by (2.1.21) has in the corresponding local coordinates the form

(2.7.146) / F(§(%,))dS.
9,
Since we neglect the viscosity, we require only @(X,t) = 0 at the solid wall, which does not

contradict the solution to our problem. Using the flux definition, we can rewrite (2.7.146)
as

T, ~
[ 020,007 Dds.
aQ;;
Setting p = p;, we obtain the approximate Riemann solver in the form

fR(éii; élb) = U2 (891])(011727 07 0; O)T

Our theoretical basis is now so strong that we can proceed to our first numerical experiments.
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3 Numerical experiments

In this chapter we will present results of some computations performed with the aid of the
four numerical fluxes developed above. Before we do this, let us make a useful remark:
when we return to the matrix A(q) defined by (2.2.25) setting w = 0 and leaving out its
fourth column and fourth row, we get exactly its two-dimensional form. Formally, following
the whole technique (eigenvalues, eigenvectors, Riemann invariants etc.) once again with
w = 0 leaving out fourth vector coordinates and forgetting zero-relations we construct the
two-dimensional version of all the mentioned methods. We hope that having understood
this indication, the reader is able to carry out remaining details by himself. Thus, our
three-dimensional schemes can be easily used also for two-dimensional (and analogously for
one-dimensional) problems which will be of great use for us, because we will see there is
a big difference in time requirements. Now let us shortly mention the dimensionless Euler
equations.

3.1 Dimensionless Euler equations

Let © be a three-dimensional bounded domain occupied by the fluid. We choose three
constants lpef,Uref, Oref — characteristic length of the domain, characteristic velocity and
characteristic density of the flow. Further, we define the characteristic time tyef = lyes/Urey-
In the system (7) we divide the first equation by

OrefUref
lref

)

further three equations by
Qrefuf-ef
lTef ’
the last equation by
Qrefugef
lref
and use the notation _
t=1t/tres
= Q/Qref
= U /Upes
U/Ures
=W/Uref
? = p/(QTefuief)
E = E/(0resul.;)
We see that the dimensionless system has again the form (7), which is a very agreeable fact
because we do not have to change our methods or our software for its numerical solution.
It is due to the zero right side in our case. In case of the non-homogeneous Euler equations
and the Navier-Stokes equations the two systems are different. More details about similarity
of flows can be found in [13].

£ < Sy
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3.2 Testing methods

In this section we will present conclusions we have obtained on the basis of two-dimensional
numerical experiments. For this purpose we use the test GAMM channel (see also [14], [10],
[21], [33] etc.).

Fig.3.2.1 - Grid on the GAMM channel

This channel is 2m long, 1Im high and there is a 10cm high circular cap centered in the
middle of its bottom. The fluid (in our case air) flows through it in the z-direction. Since
our scheme is not adaptive yet, the triangular mesh we use has to be quite fine. This
triangulation (see Fig.3.2.1) contains 5924 grid points and 11476 elements. The inlet and
outlet boundary conditions are identical with the initial one:

00 = 1.5 kg/m?
ug = 205.709277 m/s
vo =0m/s
po = 101000 Pa

i.e. M =0.67, the dimensionless form of which is

0o =1
ug =1
’l)~0=0

Po = 1.5911911657

Since the proposed FVM method is explicit, it is necessary to introduce a stability condition.
To keep the developing solution I! stable, we take over the CFL condition from [38]:

Atk k
—= 00;;|0(A(T3;;95)) < CFL.
|Qz| ]Ienj\%g)l Jlg( ( .lq )) =

For the {°° stability we use another CFL condition from [13]:

At
0,10 max o(A(Tiql) < CFL.
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The CFL value is so-called Courant-Friedrichs-Lewy constant lying in the open interval
(0, 1). The reader can easily verify that for dimensionless computations these conditions
remain unchanged. The approximate steady-state solution is considered stabilized when the
residuum is small enough. In our numerical experiments we use a slightly weaker criterion,
namely the [* norm of the relative density error

|of*! — of|

max %
i=1,...,N 0;
[

or

N o k1

15 lei™ o

k

i=1 9
i.e. its I' norm. To describe the convergence history, we plot a graph of the decimal logarithm
of these values. Since many time iterations are needed, we give their number in thousands.
In our conception the time-step is left constant during one time step. In case at an element
negative density or pressure are computed, they are set to a suitable small positive constant.
This approach is slightly different from the approach used in [26].

In the following figures we show results of this comparison. The reader can look at
them, compare them by himself and after having done it, there is our conclusion in the end.
All the four computations proceeded under exactly identical conditions, there was the only
difference in the numerical flux used.
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Fig.3.2.2 - Mach number isolines, Steger-Warming method
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Fig.3.2.3 - Mach number at the solid walls, Steger-Warming method

Fig.3.2.4 - Entropy distribution, Steger-Warming method
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Fig.3.2.5 - Convergence histogram, Steger-Warming method

56



Fig.3.2.6 - Mach number isolines, VanLeer method
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Fig.3.2.7 - Mach number at the solid walls, Van-Leer method
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Fig.3.2.8 - Entropy distribution, VanLeer method
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Fig.3.2.9 - Convergence histogram, VanLeer method
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Fig.3.2.10 - Mach number isolines, Vijayasundaram method
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Fig.3.2.11 - Mach number at the solid walls, Vijayasundaram method

Fig.3.2.12 - Entropy distribution, Vijayasundaram method
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Fig.3.2.13 - Convergence histogram, Vijayasundaram method
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Fig.3.2.14 - Mach number isolines, Osher-Solomon method
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Fig.3.2.15 - Mach number at the solid walls, Osher-Solomon method

Fig.3.2.16 - Entropy distribution, Osher-Solomon method
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Fig.3.2.17 - Convergence histogram, Osher-Solomon method
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3.2.1 Conclusion

In our opinion, a numerical scheme for solving the Euler equations is satisfactory when it
is able to focus the shock wave (especially in our case it means to capture the so-called
Zierep singularity i.e. Mach number at the cap is immediately after the shock increasing),
to describe well the shock size (in our case Mach number at the cap falls from 1.44 to 0.72
approximately), to distribute entropy through the domain correctly and to keep prescribed
boundary conditions. There are additional points of view — time requirement of the methods
and their stability.

As far as boundary conditions are concerned, we found no great difference, which is
probably due to our universal boundary treatment. We show later that there is also a
strong dependence between the boundary numerical flux and the convergence history.

In case of the Steger-Warming scheme there is no Zierep singularity, the shock size is
underestimated and the entropy is increasing along the circular cap disproportionately.

The other schemes captured the Zierep singularity much better (it is obvious that they
were limited by the grid) and distributed the entropy more correctly as well. In case of the
Vijayasundaram scheme there were great stability problems (see Fig.3.2.13) which caused
defects in Mach number and entropy isolines (see Fig. 3.2.10 and Fig.3.2.12). This example
documents clearly that we cannot rely on the convergence histogram absolutely — since the
1°° norm falls under —7 and the I' norm under —8, we would probably say the solution is
satisfactory.

There is one more important thing to be mentioned — the Osher-Solomon scheme needed
approximately three-times less computer time than the other ones.

3.3 Testing fixed boundary conditions

Numerical treatment of boundary conditions has a fundamental influence on the progress of
the computation and on its results. Especially the numerical flux through inlet and outlet
sides is important because it decides which boundary informations and how much influence
the solution inside. Since the relations we have deduced in 2.6 extrapolate physical quan-
tities the characteristics of which are going out of the domain, we call them eztrapolated.
In some papers (see [31], [37] e.g.) boundary conditions are fized. It means the inlet and
outlet numerical flux is computed in the same way as the flux inside (nothing is extrapo-
lated explicitly, boundary conditions are used in the full form) and it depends on the inside
numerical flux only how it handles boundary informations.

To show differences of these two approaches, we performed one more two-dimensional
numerical experiment the results of which are shown in Fig.3.3.1 - Fig.3.3.21. This compu-
tation proceeded by using the Osher-Solomon method. An advantage of the fixed approach
(see Fig.3.3.10 - Fig.3.3.12) is acceleration of the iterative process. On the other hand (see
Fig.3.3.1 - Fig.3.3.9) there are great discords in shape of isolines, position of the shock wave
(in our case about 8cm), size of the shock and size of physical quantities at the solid walls.
Let us now fix the boundary conditions and try to find, where the differences come from.

First, numerical fluxes developed by Steger-Warming, VanLeer and Vijayasundaram, to
computation of which many matrix operations are needed, do not allow us to understand,
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how informations about the boundary condition are propagated into the domain. In this
sense, the situation is more clear in case of the Osher-Solomon scheme and we will now take
advantage of it. Let 2 be a fictive outlet element, qo its state vector and 2; its neigh-
bour outlet element with the state qi, both state vectors expressed in corresponding local
coordinates. Let us consider the situation (see Diagram 2.5.1) A\1(q1) > 0, A\i(qa) < 0,
A2(q1) >0, A\5(gp) > 0 and A5(qz2) > 0, which can appear in case of subsonic outlet condi-
tion prescribed. Handling classically, we would extrapolate all the physical quantities from
Q to Oy (which is correct) but the fixed scheme gives the flux f(q;) + f(qa) — f(qf) i.e.
allows that information from €, influences the state q; in the next time step. This was the
simplest example but we see that there are really a very few situations only in which the
boundary informations are handled correctly.
Further, it is very easy to show that for a steady flow the continuity equation gives

(3.3.147) / ov.ndS = 0.
12191

Being aware of our solid wall boundary condition, this can be changed to the form

(3.3.148) /(9

In case we extrapolate, we do not have to prescribe ¢ and v at outlet, which is very agreeable
because due to the conservativity of FVM the relation (3.3.148) will be satisfied. In case
we fix the boundary conditions, characteristics are not respected. Well, we can arrange the
outlet density and velocity together in order that they meet (3.3.148), but we do not know
anything about their proportion. In other words, in the beginning of the computation we
would have to prescribe its results. Otherwise, our result would be a solution to a quite
different problem (see Fig.3.3.13 - Fig.3.3.21; here the z-axis follows direction upward in the
domain).

ov.ndS + / ov.ndS = 0.
1219

Linlet outlet
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Fig.3.3.1 - Mach number isolines: both inlet and outlet extrapolated

Fig.3.3.2 - Mach number isolines: inlet fixed, outlet extrapolated

2 3

Fig.3.3.3 - Mach number isolines: both inlet and outlet fixed
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Fig.3.3.4 - Mach number at the walls: both inlet and outlet extrapolated
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Fig.3.3.5

Mach number at the walls: inlet fixed, outlet extrapolated
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Fig.3.3.6 - Mach number at the walls: both inlet and outlet fixed
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Fig.3.3.7 - Density isolines: both inlet and outlet extrapolated

Fig.3.3.8 - Density isolines: inlet fixed, outlet extrapolated

Fig.3.3.9 - Density isolines: both inlet and outlet fixed
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Fig.3.3.10 - Convergence histogram: both inlet and outlet extrapolated
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Fig.3.3.11 - Convergence histogram: inlet fixed, outlet extrapolated
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Fig.3.3.12 - Convergence histogram: both inlet and outlet fixed
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Fig.3.3.13 - Density at inlet and outlet: both inlet and outlet extrapolated
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Fig.3.3.14 - Density at inlet and outlet: inlet fixed, outlet extrapolated
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Fig.3.3.15 - Density at inlet and outlet: both inlet and outlet fixed
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Fig.3.3.16 - Normal velocity at inlet and outlet: both inlet and outlet extrapolated
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Fig.3.3.17 - Normal velocity at inlet and outlet: inlet fixed, outlet extrapolated
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Fig.3.3.18 - Normal velocity at inlet and outlet: both inlet and outlet fixed
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Fig.3.3.19 - Pressure at inlet and outlet: both inlet and outlet extrapolated
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Fig.3.3.20 - Pressure at inlet and outlet: inlet fixed, outlet extrapolated
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Fig.3.3.21 - Pressure at inlet and outlet: both inlet and outlet fixed
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3.4 Basic three-dimensional problems

After having presented results of some two-dimensional numerical experiments concerning
properties of the schemes and of some further inlet-outlet treatments, we proceed to our
first three-dimensional computations, using the Osher scheme with extrapolated boundary
numerical flux. First, our aim is to verify experimentally compatibility of the two- and three-
dimensional scheme, therefore we will perform a few computations on prism-grids which are
suitable for this purpose. After this, we start using tetrahedron-grids which are obviously
the most suitable ones for complicated three-dimensional domains.

3.4.1 GAMM channel

Let us consider the three-dimensional analogy of the GAMM channel the depth of which is
10cm. The prism-grid (see Fig.3.4.1) corresponding to the triangular one we used in previous
computations, contains 35544 grid points and 57380 elements.

Fig.3.4.1 - Grid on the three-dimensional GAMM channel

At the inlet and outlet sides we prescribe the same dimensionless condition as before:
Go=1, ug=1, 9=0, W =0, po=1.5911911657 .

There were two computations performed: first, the initial condition was identical with the
inlet-outlet one, further, for this purpose extended two-dimensional results were used.

Both the results (see Fig.3.4.2 - Fig.3.4.7) are in our opinion very satisfactory. There
are practically no differences between them and the two-dimensional one. Maximal range of
the dimensionless velocity z-component is about le-6. In the second case, the computation
stopped a few iterations after its beginning because of the relative density error criterion
satisfied.
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Fig.3.4.2 - Mach number isolines
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Fig.3.4.3 - Mach number at the solid walls
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Fig.3.4.4 - Density isolines
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Fig.3.4.5 - Density at the solid walls
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Fig.3.4.7 - Convergence histogram
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3.4.2 Blade machine

The problem we will deal with in this subsection has an immediate industrial motivation —
we will solve transonic flow through a very complicated blade machine.

e )

"
. ‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\“
4
4
&

Fig.3.4.8 - A steam turbine

Unfortunately, nowadays our tools (mesh generators, computers etc.) are not able yet
to solve it three-dimensionally, therefore we are forced to simplify it. We start from the
assumption that we have already calculated an axially symmetric flow in the channel without
blades and have obtained a family of axially symmetric stream surfaces. We choose a
suitable one of them, transform it and its intersections with the blades into the (z,y) plane.
So we obtain a 2D domain 2 shown in the Fig.3.4.9, so-called cascade of profiles. This
infinite blade row is cut periodically and the computation is done in one period only using
periodic boundary conditions. For more information about the cutting process and about the
transformation see [12]. Once more, we construct its three-dimensional analogy by shifting
it in the z-axis direction.
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Fig.3.4.9 - Cascade of profiles
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The prism-grid on it contains 16404 grid points and 25300 elements.
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Fig.3.4.10 - Grid on one period of the cascade
At the inlet we do prescribe the following dimensionless boundary condition:
0o =1, up = 0.94380095, vp = 0.33051439, wy =0, po = 6.8762452
i.e. M =0.3223. The dimensionless outlet boundary condition is
oo =1, up = 0.94380095, vp = —1.46289147, Wy =0, po = 3.01044889 .

The dimensionless size of the row-period is then 0.05511679. The initial condition in the left
part of the domain is identical with the inlet boundary condition and in the right part the
outlet one was used. Results of our computation which are shown in Fig.3.4.11.-3.4.16.
are in harmony with results published in [18], [9] and [17]. In spite of that, you see that the
grid we are using is not fine enough, which documents clearly the entropy distribution shown
in Fig.3.4.15. We add a recent result (Fig.3.4.17) obtained starting from the same grid by
using an adaptive refinement scheme (see [15]). The difference, we hope, documents clearly
the adaptive grid refinement is worth studying (see also [16], [21], [8], [36] and others).
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Fig.3.4.11 - Mach number isolines

Fig.3.4.12 - Mach number at the profile
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Fig.3.4.13 - Density isolines
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Fig.3.4.15 - Entropy distribution
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Fig.3.4.16 - Convergence histogram
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3.4.3 Forward facing step

Finally, we proceed to our both last and most difficult computation mentioned in this contri-
bution. It concerns the famous supersonic test channel with the forward facing step placed
on its bottom. The domain itself is 1m high, 3m long and 25c¢m deep, the height of the step
is 20 cm and there are 40cm left in front of it. We constructed a tetrahedron-grid (as shown
in Fig.3.4.18)

Fig.3.4.18 - Grid on the forward facing step

which contains 6438 grid points and 29760 elements. Dimensionless inlet boundary condition
we prescribe in this case is

do =14
'LL~0=3
1)~0=0
wo =0
Po=1

i.e. M = 3. Results of this computation shown in Fig.3.4.19 - Fig.3.4.24 correspond to the
chosen grid which is not very fine. For more numerical results concerning this test channel
see e.g. [26], [23] and [25].
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Fig.3.4.19 - Mach number isolines

Fig.3.4.20 - Mach number at the solid walls
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Fig.3.4.21 - Density isolines

Fig.3.4.22 - Density at the solid walls
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Fig.3.4.23 - Entropy distribution
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Fig.3.4.24 - Convergence histogram



4 Description of the program

The program euler.cpp is based on theoretical results of this work. It was written in the
C++ programming language and works in the operation system Unix. It contains the three-
dimensional schemes of Steger-Warming, Van Leer, Vijayasundaram and Osher-Solomon
which can be used for two- or three-dimensional computations. There is certain variability
concerning numerical treatment of boundary conditions — for inlet and outlet sides various
fluxes (including the inside one) can be used. In every data file concerning the solver the
symbol '+’ starts a comment.

4.1 A short manual

Before you start a computation, you have to prepare two input files — a data file describing
the grid (about its format later) and a configuration file which contains all the remaining
necessary informations about the problem. The best way how to explain its format is to
give an example:

*x*% This configuration file belongs to ’euler.cpp’
*x*% 1. The contact file:

** <name>

msg

*x*% 2. The data input file:

** <name>

gamm.grid

***% 3. The solution output file:

** <name>

gamm.sol

*x*% 4. Does the solution file contain the grid?
** <yes/no>

no

*** 5. Convergence:

** (used for computation-end test)

** <1>: L°1 norm

*% <2>: L~7infty norm

** <double>: computation—-end density error limit
2

le-16

*** 6. Output convergence to a special file?

** <yes/no>

yes
** . .<1>: L71 norm output or

*k <2>: L7infty norm output or

*k <3>: both norms output,

*k <name> of the convergence file
3

gamm. conv
**%*% 7. The CFL-condition:
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** (securing the computation stability)
** <1>: only current edge measure used
**% <2>: whole element surface used

**% <double>: the CFL-constant

1

0.85

***% 8. Number of iterationms:
** <long>

100000

*** Q. (Jutput interval:

**% <int>

500

*xx 10. Kappa:

** <double>

1.4

**x 11. Do you wish to compute a periodic problem?
** <yes/no>

no

** . .two periodic boundary indexes:

** <int> <int>

*xx 12, Inlet:

*% <int int ... int> index list

1

** corresponding 3D vector list

1.0 1.0 0.0 0.0 1.5911911657

*1.56  205.709277 0.0 0.0 101000

*k*x 13. Outlet:

*% <int int ... int> index list

2

** corresponding 3D vector list

1.0 1.0 0.0 0.0 1.5911911657

*1.56  205.709277 0.0 0.0 101000

*x*% 14, Slip boundary

*% <int>: length of the slip index list

*% <int, int ... int> the slip index list

2

34

*** 15. Reflection boundary

** <int>: length of the reflection index list
¥*% <int, int ... int> the reflection index list

0

%% 16. The initial condition:
** <1>: a constant vector

**% <2>: a solution file

1
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** a constant vector or a solution file:

** <vector> or <name>

**% (must have form corresponding to point 4)
1.0 1.0 0.0 0.0 1.5911911657

*1.5 205.709277 0.0 0.0 101000

This configuration file was used for numerical solution of the flow through the GAMM chan-
nel. Let us give a short explanation to the points which could be not trivial to understand:
One: the contact file is a file which the running solver can be contacted by. The solver,
having finished an iteration, looks into the current directory and in case there is a file of this
name, the solver tries to open it, read commands and carry them out. After having finished,
it joins .read’ at the end of the filename. At the moment, these commands are still few, we
count on their development according to requirements. Let us give an example again:

* This contact file belongs to ’euler.cpp’
* comment
give_iter_made_num
* give_limits
give_L~infty
give_L"1

* give_nbound

* give_nelem

* give_npoin

* give_state
give_timestep

* no_comment
no_wait

stop

wait
write_solution

* ¥ ¥ ¥

After having read this message, the solver wrote down number of iterations it had done, last
relative density error in both norms and the last time-step.

Four: the solution file can but does not have to contain informations about the grid in
the same format as read from the data file.

Five: when the relative density error in the chosen norm falls under the given value, the
computation stops.

Six: into this file convergence histogram in the Gnuplot data format is put.

Eight: in case still running, the solver stops having finished this iteration.

Nine: with this frequency solution file on the hard disc is restored.

Twelve: length of this index list must be according to the prescribed 3D boundary
conditions number. In case you have a 2D grid, set the fourth vector component to zero.

Sixteen: the solution process can be initialized by a constant 3D vector or by a solution
file (in this case the format from point 4 must be respected).
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4.2 Data formats

Both input and output data formats are as simple and clear as possible. It may help you
viewing some example files because necessary comments are added. Let us introduce them:

4.2.1 input

number of points (%lu), number of elements (%lu), number of boundary data (%lu), list of
points (in 2D case %f %f a line, in 3D case %f %f %f a line), list of elements (in 2D case %lu
%lu %lu a line. in 3D case %lu %lu %lu %lu a line) and list of boundary data a member of
which contains an edge (a side) and an integer index - in 2D case %lu %lu %d, in 3D case

%lu %lu %lu %d.

4.2.2 output

In case your solution file has to contain the grid, it will be copied there from the data file,
then the x constant and the list of solution vectors in the form g u v p (in 2D case) or o u v
w p (in 3D case) added. In the other case, only number of elements, the x constant and the
list will be written. Of course, solution vectors are ordered correspondingly to the elements.
All these files contain comments.

5 What is to be done further

In subsection 2.6 we started analyzing inlet and outlet boundary conditions and we came to
the conclusion, that various numbers of physical quantities at the boundary sides (edges) are
determined by the solution inside — in case of subsonic inlet one, in case of subsonic outlet
four of them. Do these quantities depend on current flow problem? Which quantities are
determined? Developing the program, we made a temporary compromise considering at the
subsonic inlet the pressure and at subsonic outlet density and the velocity vector being de-
termined, which of course is not sufficient. Note that when x = 1.4 (the most common value
for numerical experiments, used in all our computations as well), the inequality (2.6.137)
is satisfied by every g, > 0.44, i.e. density always could have been prescribed instead of
pressure at the subsonic outlet.

Maybe there is a way in using Riemann invariants according to negative eigenvalues but
I’'m not sure. We had better ask physicists, who have much stronger feeling for the natural
reality than mathematicians, about what is happening with the density and pressure infor-
mations inside of a subsonic flow, to get at least some hints.

There are many further problems (viscosity, heat conduction, adaptive grid refinement
etc.) but they have little importance in comparison with the subsonic inlet and outlet
boundary conditions one.
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Part 11
Grid generation
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Introduction

To solve a flow problem in a one-, two- or three-dimensional domain efficiently means not
only to have a good numerical scheme. Since we are not able to process infinite quantity
of information, we must solve our problems as systems of finite number of unknowns in
any way. The FVM is based on finite space (so-called grid) and time discretization. Grids
can have many shapes — working in 1D we use abscissas, in 2D our theory requires convex
polygons and in the 3D case convex polyhedra are used. In this contribution we will set up
a method able to discretizate an arbitrary 2D bounded domain with continuous piecewise
linear boundary by creating an unstructured homogeneous grid consisting of triangles and
we will support it theoretically by proving its correctness.

Grid generation is a subject of world-wide interest. Published methods are mostly two-
dimensional (see [19], [2], [30], [34], [20], [22], [39] e.g.) but there are some papers concerning
the 3D mesh generation too (see [29], [1], [4]).

Let us remark that the idea of the following scheme does not depend on the dimension,
we are restricted to 2D for technical reasons only.

93



1 Description of the scheme

Our scheme sticks on the solution of two independent tasks which we are going to introduce
now.

Task one: let Q be a generalized oriented polygon. We denote B the set of its boundary
vertexes. Let I C Q be a finite set of points. Our aim is to divide Q in a finite number of
triangles T = {T1,Ts, ..., Ty} in order that
a) ¥=Ures T
b) for every p € I thereis a T € T so that p is a vertex of T
c) for every p € B there is a T € T so that p is a vertex of T'

d) there is no T' € T a vertex of which does not lie in BU I
e) in case Th,T» are two different members of T, just one of the following options is valid:

i) T1 and T, have an empty penetration

ii) the penetration of Ty and Ty is just one shared vertex

iii) the penetration of 7} and T} is just one shared edge
Here the expression T, and T, share a vertex’ means the point is a vertex in T; and it
is a vertex in T, etc. Definitions of ’generalized oriented polygon’, ’boundary vertex’ and
‘triangle’ come soon.

Task two: let 2 be a generalized oriented polygon the boundary vertex set B of which
contains ny members. Let n be an arbitrary natural number and P : R? x R? - R a strict
falling function. We search for a n—member set I C Q, N B = () in order that

(1.1) > Y Py

zel yelUB,x#y

is minimal.

1.1 Task one

Definition 1.1.1

Let a,b be two different points in R?. By the symbol ab (= ba) we will denote the set
{z € R? which a t € (0,1) exists to so that z = a + t(b — a) }. Points a,b are so-called
outside points of ab.

Definition 1.1.2

Let ab be an abscissa. The arranged couple [ab, ‘Z:—Zl] is so-called oriented abscissa ab,
point a its start point and point b its end point. We say that two oriented abscissas cut them-
selves if the corresponding abscissas have just one intersection point. The penetration of two
oriented abscissas is not empty if the penetration of the corresponding abscissas is not empty.

Definition 1.1.3
By the concept domain we will call an open subset Q # 0 of R? two arbitrary points

1 # 2o of which it is possible to connect by a piecewise linear, continuous curve lying in Q.

Definition 1.1.4
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Let Q # () be an open subset of R?. Its subset K # () is its component if K is a domain
and there is no other domain K C Q that K C K & K # K.

Definition 1.1.5

Let I'1,T5,...,T',, be such oriented abscissas that the end point of I'; is identical with
the start point of I';44 for ¢ = 1,2,...,n — 1, the end point of I';, is identical with the start
point of T'y and in case I; NT; # 0, i # j, i,j € {1,2,...,n}, their direction is opposite.
The unification |J;-_, T; is so-called cycle L if its complement to R? has just two compo-
nents. The bounded one of them is so-called interior of L, denoted by int(L). Two oriented
abscissas of a cycle are neighbours if it is about I';, I';41 where i € {1,2,...,n — 1} or it is
about I'y, T',. Outside points of I'1, 'y, ..., T',, are so-called vertezes of the cycle. We say
that two cycles L, L cut themselves if int(L) Nint(L) # 0 & int(L) ¢ int(L) & int(L) ¢
int(L).

Definition 1.1.6

An arbitrary set § # Q C R? is so-called generalized oriented polygon if its boundary is
positive oriented and it consists of a finite number of cycles which do not cut themselves.
We call vertexes of these cycles vertexes of 2. We say that there is convex angle by a vertex
p of Q if in a cycle of 90 lie two neighbour oriented abscissas in order that p is end point
of the first one and start point of the other one and the corresponding inside angle of € is
convex (i.e. belongs to the interval (0, )).
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Example 1.1.7 (generalized oriented polygon)
a) b) c)

Theorem 1.1.8
To every generalized oriented polygon belongs at least one vertex which there is a convex
angle by.

Proof: Immediately from the inside angle sum w(n — 2) for an arbitrary polygon with
n vertexes.

Definition 1.1.9

Let Q be a generalized oriented polygon. An abscissa I' C ) the outside points of which
are vertexes of (2 is so-called diagonal of Q2. Let us emphasize that no vertexes lie on a
diagonal.

Definition 1.1.10
Generalized oriented polygon with just three vertexes is so-called triangle.

Theorem 1.1.11
Every generalized oriented polygon the at least one component of which is not a triangle,
contains a diagonal.

Proof: We denote this generalized oriented polygon by the symbol 7. Due to the the-
orem 1.1.8 we have a vertex which is a convex angle by. We denote by ab, bc couple of the
corresponding neighbour abscissas from 07'. In case the triangle abc C T, ac C T and there
is no vertex T on ac, the abscissa ac is a diagonal of T'. Else, we denote by the symbol K
the convex surface of the vertexes of T which lie in the triangle abc or on the abscissa ac.
There is just one point d nearest to the point b. In case d is a vertex of 0K, the convexity
gives us that bd is a diagonal of T'. Else, due to the convexity again, it suffices to take an
outside point of the longest subabscissa of K which contains the point d.

Theorem 1.1.12

Let 2 be a generalized oriented polygon and let I' be its diagonal. The complement of T’
to 2 is a generalized oriented polygon again.
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Proof: Immediately from the definition 1.1.6.

Theorem 1.1.13 (visibility theorem)

Let Q be a generalized oriented polygon and a,b its vertexes in order that the oriented
abscissa ab belongs to a cycle of 9€2. Then another vertex ¢ € 912 exists so that the triangle
abc C  and the abscissas ac, bc do not contain any vertex of 2.

Proof: Immediately from theorems 1.1.11 and 1.1.12 by the mathematical induction.

Remark 1.1.14 L
The complement of abc to Q2 is a generalized oriented polygon again.

Definition 1.1.15

By the concept triangulation criterion we call a function ® : R? x R? x R* - R sat-
isfying the following condition: in case a,b,c,d are four different points in R? meeting
(b1 — al)(CQ — UQ) — (bg — a2)(61 — a1) >0 & (bl — al)(dz — UQ) — (bg — ag)(dl — al) > 0, the

function ® is defined and in case ®(a,b,c) < ®(a,b,d) the point d does not lie in abe.

Remark 1.1.16

The first two inequalities from the previous definition secure that points ¢, d lie ’on the
left’ to the oriented abscissa ab — they are connected with the positive boundary orientation.
The next condition secures that the triangulation algorithm 1.1.18 won’t fail.

Example 1.1.17
A very satisfactory triangulation criterion is the following one:

ca.ch
1.2 ® = —

which is connected with the angle acb cosine. You may easily verify its correctness.

Algorithm 1.1.18
Consider £k =0, o = Q and 7 = @. Choose an arbitrary triangulation criterion .

1. Choose an arbitrary oriented abscissa ab from any cycle of 0.

2. Define the set My, = { c € R?, cis a vertex of Q, ¢ # a, ¢ # b so that abc is a triangle
lying in €, and the abscissas ac, be do not contain any vertex of Q}. Theorem 1.1.13 implies
Mgy # 0. Due to the positive boundary orientation (b1 —a1)(c2 —az) — (b2 —a2)(c1 —a1) > 0
for every point ¢ € Myp.

3. Define the set S, = (UceMab%ﬂ I) U My, and denote ¢ its point which ®(a,b,c)
is minimal at.
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4. Add the triangle abc into 7 and define a new domain Q1 as the complement of abc to
Q. Due to the theorem 1.1.13 Q44 is a generalized oriented polygon again.

5. Set k := k + 1 and repeat this five-points-loop until €2, is empty.

This algorithm stops after a finite number of cycles and it is not difficult to verify that
the triangulation is correct (see definition of the first task). Thus, our Task one has always
at least one solution.

1.2 Task two

The reader may imagine that members of the sets B and I are bounded and free microscopic
particles with charge, respectively, which repulse themselves inside of a two-dimensional
vessel Q by forces characterized by a potential P. The idea is very simple — when the system
comes to its equilibrium state (i.e. particles are not moving), the particles will be placed in
Q uniformly (their density will be constant approximately). Hence, the set I obtained in this
way could lead to a good triangulation of the domain. There is a physical requirement, for
emergence of this equilibrium state — existence of frictional forces (i.e. there is no vacuum)
in the vessel Q. The free particles (the set I members) number estimate
2|Q| Np
n e

N\/ghQ 5

where |Q| is the domain area size and h the medium distance of neighbour boundary vertexes
comes from the aim to obtain a grid the triangles of which are mostly regular.

The rest is a business of the computer simulation. The problem is discretized in time,
free particles are moved in harmony with the Coulomb law and in every step we decrease
their kinetic energy (because of the friction). After the system has found its equilibrium
(i-e. free particles are moving around their equilibrium positions), we apply the algorithm
1.1.18.

2 Examples

In the Unix X-Window system a graphic application of this algorithm was written some sim-
ple example grids created by which we are going to introduce now. We think that looking
at these figures, you will understand the idea of the moving particles much better.

The grid shown in Fig.1 was constructed at the same moment the generator placed ran-
dom points into 2 (in this case a square). The random point set is quite wild, in spite of that
our algorithm could not fail. Further, in Fig.2 and Fig.3 are shown two equilibrium states
obtained by putting different numbers of free particles into the domain. The ’triangular’
number we mentioned already (see the relation (1.2)) and the 'quadrangular’ one is also easy
to be estimated. Of course, the triangulation from the Fig.2 is much better — we want to
indicate only that a similar algorithm for creating quadrangle-grids could be written. Fig-
ures 4 and 5 show that with the domain becoming more difficult the triangulation becomes
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highly unstructured. In the last two figures, there are two simple grids put onto our test
domains introduced in Part I of this thesis.

Fig.1 - 'Random’ point set in a square
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Fig.2 - "Triangular’ point set in a square

Fig.3 - ’Quadrangular’ point set in a square

100




Fig.4 - Domain with a circular hole 1

Fig.5 - Domain with a circular hole 2
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Fig.6 - Triangulation on the GAMM channel

Fig.7 - Triangulation on a forward facing step
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