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B.2.4 Example 1: L-shape domain problem

The first numerical example deals with a problem whose exact solution u is known. The
advantage of such examples is that the approximation error eh,p(x) = u(x) − uh,p(x)
can be calculated exactly in the whole domain Ω. We consider a domain Ω ⊂ R

2 with a
re-entrant corner, shown in Fig. B.2.
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Figure B.2 Geometry of the L-shape domain.

Solved is the equation −∆u = 0 in Ω, equipped with the Dirichlet boundary conditions

u(x) = R(x)2/3 sin(2θ(x)/3 + π/3) for all x ∈ ∂Ω.

Here R(x) and θ(x) are the standard spherical coordinates in the plane. The exact solution
has the form

u(x) = R(x)2/3 sin(2θ(x)/3 + π/3) for all x ∈ Ω.

The magnitude of the gradient |∇u| of the exact solution (whose calculation is left to the
reader as an exercise) has a singularity at the re-entrant corner. This behavior is usual
for second-order elliptic problems in domains with re-entrant corners, and it makes their
numerical solution challenging. This phenomenon, despite being very local, is a significant
source of error. The error can be measured in a variety of different ways. The H 1-norm

‖eh,p‖H1(Ω) =

(
∫

Ω

|u − uh,p|
2 + |∇u −∇uh,p|

2 dx

)
1

2

is a natural choice from the point of view of the weak formulation of the problem. The
L∞-norm

‖eh,p‖L∞(Ω) = sup
x∈Ω

|u(x) − uh,p(x)|,

on the other hand, gives the maximum difference of u and uh,p. We use the H1-norm
in what follows. The problem was solved twice, using the piecewise-linear FEM and the
hp-FEM. In both cases it was our goal to attain the best possible accuracy using the fewest
possible degrees of freedom. The solution, gradient of the solution and the meshes are
shown in Figs. B.3 – B.7. After that we compare the efficiency of the piecewise-linear
FEM and the hp-FEM in Table B.1.
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Figure B.3 The exact solution of the L-shape domain problem.

Figure B.4 Detail view of |∇uh,p| at the re-entrant corner (zoom = 70).
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Figure B.5 The hp-mesh. Large fifth-order elements are used far from the singularity, small
quadratic elements cover the vicinity of the re-entrant corner.

Figure B.6 The hp-mesh - detail of the re-entrant corner (zoom = 70).
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Figure B.7 The piecewise-linear mesh. This mesh was uniformly refined for the computation in
order to reach the prescribed accuracy (each edge was subdivided into 60).

An efficiency comparison of the piecewise-linear FEM and hp-FEM is shown in Table B.1.
Both computations, as well as all other computations shown in the following, were per-
formed using our modular FEM system HERMES under identical conditions on a desktop
Linux PC with a 3 GHz Pentium 4 processor and 2 GB of memory. The piecewise-linear
FEM was obtained by setting the polynomial degree to p := 1 in all elements.

linear elements hp-elements

DOF 143161 839
Error 0.1876 % 0.1603 %
Iterations 421 30
CPU time 2.1 min. 0.35 sec.

Table B.1 Comparison of the number of DOF, relative error in the H1-norm, number of
iterations of the matrix solver and the CPU-time.

Acknowledgment We use the following public-domain software tools:

• The triangular mesh generator Triangle [107] by Richard Shewchuk
(see http://www-2.cs.cmu.edu/~quake/triangle.html)

• The visualization tool General Mesh Viewer (GMV) by Frank Ortega
(see http://www-xdiv.lanl.gov/XCM/gmv/GMVHome.html)
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B.2.5 Example 2: Insulator problem

This time it is our goal to calculate the distribution of the electric field induced by an
insulated conductor in the vicinity of a point where the conductor leaves the wall. The
computational domain Ω ⊂ R

2 corresponding to this axisymmetric problem is depicted in
Fig. B.8.
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Figure B.8 Computational domain (all measures are in millimeters).

The wall itself, where we are not interested in the solution, is not included in the domain
Ω. The same holds for the conductor at the horizontal axis of symmetry. Both the wall
and the conductor are handled via suitable boundary conditions (to be defined below).
The hatched subdomain Ω2 ⊂ Ω represents the insulator with the relative permittivity
εr = 10. The relative permittivity in the rest of the domain is εr = 1. This problem is more
difficult compared to the previous one, because in addition to a re-entrant corner there is
a material interface in the domain along which the electric field E is discontinuous (i.e.,
across which the scalar potential ϕ has a significant jump in the derivative). Solved is the
standard potential equation of electrostatics (7.27) in cylindrical coordinates, equipped with
the following boundary conditions:

ϕ = 220 V on Γ1,

ϕ = 0 V on Γ4 ∪ Γ5,

and

∂ϕ

∂ν
= 0 on Γ2 ∪ Γ3 ∪ Γ6.

Again we compare the results obtained by means of the piecewise-linear FEM and hp-FEM.
The solution, gradient of the solution and the meshes are shown in Figs. B.9 – B.13. An
efficiency comparison is presented in Table B.2.
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Figure B.9 Solution of the insulator problem (electric potential ϕ).

Figure B.10 Detail of the singularity of |E| = |−∇ϕ| at the re-entrant corner, and the discontinuity
along the material interface (zoom = 1000).
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Figure B.11 The hp-mesh – global view. Large fifth-order elements are used far from the singularity
and material interface, small quadratic elements are placed close to the re-entrant corner and the
material interface

Figure B.12 The hp-mesh – detail of the re-entrant corner (zoom = 1000).



456 SOFTWARE AND EXAMPLES

Figure B.13 The piecewise-linear mesh. This mesh was uniformly refined for the computation in
order to achieve the requested accuracy (each edge was subdivided into 23).

The efficiency comparison is shown in Table B.2.

linear elements hp-elements

DOF 259393 6331
Error 1.617 % 1.521 %
Iterations 228 60
CPU time 34 min. 11.58 sec.

Table B.2 Comparison of the number of DOF, relative error in the H1-norm, number of
iterations of the matrix solver and the CPU-time.
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B.2.6 Example 3: Sphere-cone problem

The next problem also deals with electrostatics. A metallic sphere of the radius 200 mm
carries an electric potential ϕs = 100 kV. The distance of the sphere to the ground is 1000
mm. There is a metallic cone 100 mm above the sphere with zero electric potential. The cone
is 500 mm high and its bottom has the radius 100 mm. The axisymmetric computational
domain Ω is depicted in Fig. B.14 (notice that the figure describes the boundary conditions
used). We solve the equation (7.27) in cylindrical coordinates again, and compare the
performance of the piecewise-linear and hp-FEM. The solution, gradient of the solution
and the meshes are shown in Figs. B.15 – B.19. An efficiency comparison is presented in
Table B.3.
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Figure B.14 Computational domain of the cone-sphere problem.
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Figure B.15 Solution of the cone-sphere problem (the electric potential ϕ).

Figure B.16 Detail of the singularity of |E| = | − ∇ϕ| at the tip of the cone (zoom = 100,000).
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Figure B.17 The hp-mesh – global view. Large seventh-order elements are used far from the
singularity and small quadratic elements at the tip of the cone.

Figure B.18 The hp-mesh – detail of the tip of the cone (zoom = 100,000).



460 SOFTWARE AND EXAMPLES

Figure B.19 The piecewise-linear mesh. This mesh was uniformly refined for the computation in
order to attain the prescribed accuracy (each edge was subdivided into 48).

An efficiency comparison is shown in Table B.3.

linear elements hp-elements

DOF 488542 3317
Error 0.5858 % 0.2804 %
Iterations 859 44
CPU time 30 min. 10.53 sec.

Table B.3 Comparison of the number of DOF, relative error in the H1-norm, number of
iterations of the matrix solver and the CPU-time.
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B.2.7 Example 4: Electrostatic micromotor problem

This computation is rooted in the construction of electrostatic micromotors. These devices,
which are capable of transforming the electric energy into motion analogously to standard
electromotors, do not contain any coils or electric circuits that could be destroyed by strong
electromagnetic waves. The goal of this computation is a highly-accurate approximation of
the distribution of the electric field in a domain containing two electrodes and a thin object
placed between them. The problem is plane-symmetric, and Fig. B.20 shows one half of
the domain Ω.
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Figure B.20 Computational domain (the scaling was adjusted, but true measures in millimeters are
provided). The electrode is modeled via a Dirichlet boundary condition.

The gray subdomain Ω2 represents the moving part of the device,while the white subdomain
Ω2 represents the electrodes that are fixed. The distribution of the electric potential ϕ is
governed by the equation (7.27),

−∇ · (εr(x)∇ϕ(x)) = 0 in Ω,

equipped with the Dirichlet boundary conditions

ϕ = 0 V on Γ1,

and
ϕ = 50 V on Γ2.

The relative permittivity εr is piecewise-constant, ε = 1 in Ω1 and ε = 10 in Ω2. We solve
the problem twice, using the piecewise-linear and hp-FEM. The solution, gradient of the
solution, a-posteriori error estimate based on a reference solution (obtained on a uniformly
hp-refined mesh) and the meshes are shown in Figs. B.21 – B.23. An efficiency comparison
is presented in Table B.4.
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Figure B.21 Solution of the micromotor problem. Top: electric potential ϕ (zoom = 1 and 6).
Bottom left: detail view of the singularity of |E| = | − ∇ϕ| at a corner of the electrode (zoom =
1000). Bottom right: Error estimate based on a reference solution (zoom = 1000).
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Figure B.22 The hp-mesh (zoom = 1, 6, 50, 1000). Large sixth-order elements are used far from
the electrodes and small quadratic elements are placed at the re-entrant corners.
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Figure B.23 This piecewise-linear mesh was uniformly refined for the computation in order to
achieve the requested accuracy (each edge was subdivided into 44) (zoom = 1 and 6).

An efficiency comparison is shown in Table B.4.

linear elements hp-elements

DOF 472384 4511
Error 0.2024 % 0.173 %
Iterations 387 71
CPU time 32 min. 17 sec.

Table B.4 Comparison of the number of DOF, relative error in the H1-norm, number of
iterations of the matrix solver and the CPU-time.
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B.2.8 Example 5: Electromagnetics diffraction problem

The last example taken from [76] is concerned with an electromagnetic diffraction problem
in the domain Ω = (−10, 10)2 \ (0, 10)× (−10, 0) with re-entrant corner. The Maxwell’s
module of HERMES (see Paragraph B.2.3) is employed to discretize the time-harmonic
Maxwell’s equations by means of hierarchic hp edge elements. The edge elements use the
same hp-FEM kernel as the elliptic module that was described in Paragraph B.2.2. The
technology of the hierarchic edge elements is slightly different from the Nédélec elements.
The hierarchic vector-valued shape functions used in HERMES can be found in [111]. The
reference transformation (7.115) derived in Paragraph 7.5.2 is used without changes.

The problem involves perfect perfect conducting boundary conditions on the edges meet-
ing at the re-entrant corner, and impedance boundary conditions on the rest of the boundary
(see [76] for their exact definition). The exact solution to this problem is given by

E(x) = ∇̄ × Jα(r) cos(αφ), r(x) =
√

x2
1 + x2

2, (B.8)

where the symbol ∇̄ = (∂/∂x2,−∂/∂x1)
T stands for the vector-valued curl, α = 2/3,

Jα is the Bessel function of the first kind, and (r, φ) are the cylindrical coordinates in the
plane. The exact solution (whose singularity was truncated for visualization purposes) is
depicted in Fig. B.24. We do not show the approximate solutions, since they are optically
identical to the exact one. Figs. B.25 and B.26 show the hp-mesh and lowest-order mesh
consisting of the Whitney elements. An efficiency comparison is shown in Table B.5.

Figure B.24 The exact solution to the diffraction problem (the magnitude of the phasor of the
electromagnetic field |E|). The singularity at the re-entrant corner was truncated for visualization
purposes.

This example can be used to make another important observation: The asymptotic expansion
of the exact solution (B.8) at r = 0 reveals a singularity O(r−4/3), which is too strong for
E to lie in the space [H1(Ω)]2. Thus, getting back to what we said at the beginning of
Section 7.5, no Galerkin sequence could be constructed using subspaces of [H 1(Ω)]2.
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Figure B.25 The hp-mesh consisting of hierarchic edge elements.

Figure B.26 The mesh consisting of the lowest-order (Whitney) edge elements. This mesh was
uniformly refined for the computation (each edge was split into 10).

Whitney edge elements hp edge elements

DOF 2586540 4324
Error 0.6445 % 0.6211 %
CPU time 21.2 min. 2.49 sec.

Table B.5 Comparison of the number of DOF, relative error in the H(curl)-norm and the
CPU-time.


