HIGHER-ORDER ELEMENTS 81

//0uter loop over vertex (test) functions:
for i = 1,2 do {
//1f > -1, my is index of a test function vm,; € Vi p,
//i.e., row in S:
ml := Elem[m].vert_dof[i];
if (m1 > -1) then {
//Inner loop over vertex (basis) functions:
for j = 1,2 do {
//1f > -1, ma is index of a basis function vm, € Vj p,
//i.e., colum in S:
m2 := Elem[m].vert_dof[j]l;
if (m2 > -1) then
S[m1] m2] := S[m1] [m2] + al+MESI[i][j]/Elem[m].jac
+ a0*Elem[m] .jac*MEMI[i] [j];
} //End of inner loop over vertex functions
//Inner loop over bubble (basis) functions:
for j = 1,2,...,Elem[m].p-1 do {
m2 := Elem[m].bubb_dof[j];
S[m1] [m2] := S[m1] [m2] + al*MESI[i][j+2]/Elem[m]. jac
+ a0*Elem[m] . jac*MEMI[i] [j+2];
} //End of inner loop over bubble functions
//Contribution of the vertex test function wm,
//to the right-hand side F':
Flmi] := Flm1] + [i |Jr, [f0™) (€)pi(€) d€;
} //End if (m1 > -1)
} //End of outer loop over vertex functions
//Outer loop over bubble (test) functions:
for i = 1,2,...,Elemn[m].p-1 do {
ml := Elem[m].bubb_dof[i];
//Inner loop over vertex (basis) functions:
for j = 1,2 do {
m2 := Elem[m].vert_dof[j];
if (m2 > -1) then
S[m1] [m2] := S[m1] [m2] + al*MESI[i+2][j]/Elem[m].jac
+ a0*Elem[m] . jac*MEMI[i+2] [j];
} //End of inner loop over vertex functions
//Inner loop over bubble (basis) functions:
for j = 1,2,...,Elem[m].p-1 do {
m2 := Elem[m].bubb_dof[j];
S[m1] m2] := S[m1] [m2] + al+MESI[i+2] [j+2]/Elem[m].jac
+ a0*Elem[m] . jac*MEMI[i+2] [j+2];
} //End of inner loop over bubble functions
//Contribution of the bubble test function Umq
//to the right-hand side F':
Flntl := Flnil + [y [T, [F0 (©)pira(€) dc:
} //End of outer loop over bubble functions
} //End of element loop

In Algorithm 2.5 we used the notatiofi™ (¢) = f(zx,, (€)). If the operatorL is
space- or time-dependent (for example, if the coefficientfionsa; andag in the model
problem (2.20) are not constant), the precompM&ESI andMEMI arrays cannot be used.
Instead, appropriate numerical quadrature must be peeeach time th®¥ESI or MEMI
arrays in Algorithm 2.5 are accessed.

Efficient implementation of Algorithm 2.5 For the sake of transparency, large por-
tion of Algorithm 2.5 (the application of a given test furagtito all vertex and bubble basis
functions) was repeated two times with minor changes. Taisqf the code can be moved
to a separate subroutine. Moreover, it is not necessargte ste fullElem [m] . bubb_dof



