
80 CONTINUOUS ELEMENTS FOR 1D PROBLEMS

In the former case it is possible to avoid repeated numericalintegration on every element
and assemble the global stiffness matrixS efficiently by means of precomputed prototype
integrals calculated on the reference domainKa. The integrals present in the weak for-
mulation of a concrete problem determine which constants have to be precomputed. For
example, problem (2.20) with constant coefficients requires theL2(Ka)-products of the
first derivatives of the shape functions (master element stiffness integrals. MESI) and, if
a0 6= 0, then also theL2(Ka)-products of the shape functions themselves (master element
mass integrals, MEMI), In one dimension these constants canbe organized in the form of
square matrices.

If we denote the maximum polynomial degree in the mesh bypmax and consider some
set of shape functionsϕ1, ϕ2, . . . , ϕpmax+1 ∈ P pmax(Ka), the master element stiffness
matrixSKa

of problem (2.20) has the form

SKa
= {ŝij}

pmax+1

i,j=1
=

{
∫

Ka

ϕ′

i(ξ)ϕ
′

j(ξ) dξ

}pmax+1

i,j=1

. (2.68)

The master element mass matrixMKa
is defined as

MKa
= {m̂ij}

pmax+1

i,j=1
=

{
∫

Ka

ϕi(ξ)ϕj(ξ) dξ

}pmax+1

i,j=1

. (2.69)

The only information about the reference mapxKm
that is needed on every element

Km ∈ Th,p in the assembling algorithm is its Jacobian. Therefore, foreach elementKm

we introduce one more constant,Elem[m].jac := |JKm
|. The assembling procedure for

model problem (2.20) with homogeneous Dirichlet boundary conditions can be written as
follows.

Algorithm 2.5 (Assembling algorithm)

//Calculate the dimension of the space Vh,p:

N := -1;

for m = 1,2,...,M do N := N + Elem[m].p;

//Calculate the master element stiffness integrals MESI:

//(Use sufficiently accurate Gaussian quadrature to obtain exact results)

for i = 1,2,...,MAXP+1 do {
for j= 1,2,...,MAXP+1 do {

MESI[i][j] :=
R

1

−1
ϕ′

i(x)ϕ′

j(x) dx;

}
}
//Calculate the master element mass integrals MEMI:

for i = 1,2,...,MAXP+1 do {
for j= 1,2,...,MAXP+1 do {

MEMI[i][j] :=
R

1

−1
ϕi(x)ϕj(x) dx;

}
}
//Calculate the value of Elem[m].jac for all elements Km, m = 1, 2, . . . , M:

for m = 1,2,...,M do Elem[m].jac := (xm − xm−1)/2;
//Set the stiffness matrix S zero:

for i = 1,2,...,N do for j = 1,2,...,N do S[i][j] := 0;

//Set the right-hand side vector F zero:

for i = 1,2,...,N do F[i] := 0;

//Element loop:

for m = 1,2,...,M do {


