$$\int_0^1 g(x)\,dx = g(\xi).$$

Exercise A.32 Adjust the procedure from Example A.31 to prove the equivalence of the maximum norm (A.17) and the p-norm (A.19) with p = 2 in the space $P^k([-1,1])$, where k is an arbitrary natural number.

Exercise A.33 Let $(a, b) \subset \mathbb{R}$ be a nonempty bounded interval.

- 1. Construct an infinite sequence of functions in the space V = C(a, b) that converges in the p-norm for all $1 \le p < \infty$ but which does not converge in the maximum norm.
- 2. Use this sequence and Definition A.34 to show that the maximum and p-norms are not equivalent in V.
- 3. Is it possible to construct a sequence in V which converges in the maximum norm but does not converge in the p-norm? Present a proof.
- 4. Find a subset $S \subset V$ that is open in the maximum norm but is not open in the p-norm. Is it possible to do this vice versa as well?

Exercise A.34 Show that the definitions of the operator norm (A.26) and (A.27) are equivalent.

Exercise A.35 *Prove Proposition A.6 (every convergent sequence in a normed space is a Cauchy sequence).*

Exercise A.36 Let V be a normed space and $\{u_n\}_{n=1}^{\infty} \subset V$ a Cauchy sequence. Suppose that there is a subsequence $\{u_{n_k}\}_{k=1}^{\infty} \subset \{u_n\}_{n=1}^{\infty}$ and some element $u \in V$ such that

$$\lim_{k \to \infty} u_{n_k} = u.$$

Show that

$$\lim_{n \to \infty} u_n = u.$$

Exercise A.37 Show that the sequence (A.34) is convergent and that the limit is \sqrt{a} . Hint: Use, for example, (A.35).

Exercise A.38 Consider the open ball $B(\mathbf{0}, R) \subset \mathbb{R}^d$, d = 3, with a finite radius R > 0, and the function $f(\mathbf{x}) = 1/r^{\alpha}$, $r(\mathbf{x}) = \sqrt{x_1^2 + \ldots + x_d^2}$. Show that the following statements hold:

- 1. Let $\Omega = B(\mathbf{0}, R)$. Then $f(\mathbf{x}) \in L^p(\Omega)$ if and only if $\alpha < d/p$.
- 2. Let $\Omega = \mathbb{R}^d \setminus \overline{B(\mathbf{0}, R)}$. Then $f(\mathbf{x}) \in L^p(\Omega)$ if and only if $\alpha > d/p$.

Describe in detail the application of the Substitution Theorem for integration in spherical coordinates and calculate the corresponding finite integrals.