EXAMPLE A.22 (Convergence and limit)

 Consider the space V = R³ equipped with the discrete maximum norm (A.10) and a sequence of vectors {u_n}[∞]_{n=1} ⊂ V,

$$u_n = \left(1 - \frac{1}{n}, e^{-n}, \frac{\sin(n)}{n^2}\right)^T$$

The only candidate for a limit is $v = (1, 0, 0)^T$. The sequence converges to v since

$$||u_n - v||_{\infty} \le \frac{1}{n}$$
 for all $n \ge 1$.

2. Let V = C([0, 1]) equipped with the maximum norm (A.17),

$$\|v\|_{\infty} = \sup_{x \in (0,1)} |v(x)|$$

and consider a sequence of functions $\{u_n\}_{n=1}^{\infty} \subset V$,

$$u_n(x) = x^n(1-x) + x^3 + 1.$$

Since

$$\max_{x \in (0,1)} |u_n - (x^3 + 1)| = \left(\frac{n}{n+1}\right)^n \left(\frac{1}{n+1}\right) \le \frac{1}{n+1}$$

the only candidate for a limit is $v(x) = x^3 + 1$. Since

$$\|u_n - v\|_{\infty} \le \frac{1}{n+1}$$

the sequence converges to v.

■ EXAMPLE A.23 (Nonconvergent sequences)

It is easy to show, using Lemma A.20, that the following sequences do not converge.

- 1. Consider the space $V = P^2([0,1])$ equipped with the maximum norm (A.17), and the sequence $\{u_n\}_{n=1}^{\infty} \subset V$, $u_n(x) = nx(1-x)$. The sequence is not bounded $(||u_n||_{\infty} = n/4 \text{ for all } n)$.
- 2. In the same space V let $\{u_n\}_{n=1}^{\infty} \subset V$, $u_n(x) = (-1)^n x(1-x)$. The sequence is bounded $(||u_n||_{\infty} = 1/4 \text{ for all } n)$, but $||u_{n+1} u_n||_{\infty} = 1/2 \text{ for all } n$.
- 3. Let V = C([0,1]) be equipped with the integral norm (A.18), and consider the sequence $\{u_n\}_{n=1}^{\infty} \subset V$, $u_n(x) = x^n$. It is $||u_n||_1 = 1/(n+1)$ for all *n*, but the only function *v* that could be its limit is defined by v(x) = 0 for $x \in [0,1)$ and v(1) = 1. However, this function does not lie in the space *V*. More about this situation will be said in Paragraph A.2.7.