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Prologue. One of the attractions for visitors to Moscow is the gravestone of
Nikita Khrushchev in the Novedevichy cemetery. It is composed of very white and
very black sculpted marble, which are supposed to represent the brilliant and the dark
sides of his character and his achievements. Similarly, the subsequent review will be
in two parts.

The First Project. The original title of the underlying project was Engineering
Mathematics 2000, and this title expresses precisely the contents and style of the
treatise: it grew out of lectures of mathematics at Chalmers Technical University in
Göteborg, Sweden, addressed to students of chemical engineering, who “enthusias-
tically participated in the development of the reform project of this book.” And as
such, the book deserves a lot of white marble: it covers analysis from the introduction
of numbers to multiple integrals and Stokes’ theorem, the basic notation and results
of linear algebra, and some techniques of numerical analysis (bisection algorithm,
Newton’s method, ordinary differential equations, optimization strategies) and culmi-
nates in an explanation of the solution of partial differential equations by the finite
element method. The elaboration of many interesting examples, often taken from
concrete applications, and many historical notes (the most beautiful being the ac-
count on Reynolds’ teaching style on page 119) bring a lot of motivation for students.
Many new concepts to be introduced are very carefully prepared for with numerous
figures, numerical examples, and situations from real life (paying taxes, driving a car,
etc.) and make many parts of the book very readable and easily understandable. The
project is accompanied by a homepage: http://www.phi.chalmers.se/bodysoul/.

The Actual Treatise. But now the work comes with a more pretentious title,
Applied Mathematics: Body and Soul, in three volumes, totaling 1213 pages, 87 chap-
ters, and 839 subsections. Each volume contains 26 pages of table of contents for all
volumes and a preface of 9 pages announcing “The Need of Reform of Mathematics
Education,” “. . . as we now pass into the new millennium,” and telling us that the
“program is based on a synthesis of mathematics” (what is meant by “soul”) and
“computation and application” (what is meant by “body”), and that it “is based on
new literature . . . giving the student a solid understanding of basic mathematical con-
cepts such as real numbers, Cauchy sequences, Lipschitz continuity and constructive
tools for solving algebraic/differential equations, together with an ability to utilize
these tools in advanced applications such as molecular dynamics.”

Publishers are invited to send books for review to Book Reviews Editor, SIAM, 3600 University
City Science Center, Philadelphia, PA 19104-2688.
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Such an ambitious program is now addressed to a much wider class of students
“in engineering and science,” which may have higher requirements of mathematical
precision—and call for a more critical referee. After closer inspection, we discover a
lot of “black marble.”

The “new literature,” on which the book is said to be based, is never cited, and the
book is full of phrases like “one can prove that the number of iterations. . . ” (p. 675),
“It can be shown that. . . ” (p. 538), “. . . is known not to be an elementary function. . . ”
(p. 521), and “One can prove. . . ” (p. 518). None of these statements is accompanied
either by a proof or by a hint, nor by a reference. And if occasionally other “Calculus
text books” are mentioned—“in your nearest library or on your book shelf” with
their “pathological side effects,” “. . . quite meaningless circular reasoning, and some
Calculus books completely fall into this trap” (p. 436)—it is then just to criticize them.

Volume 1. Already in the first chapters of Volume 1 (Derivatives and Geometry
in R3) we find many inaccuracies: we read in Chapter 5 that by an argument like

(1 + 1) + (1 + 1 + 1) = 1 + 1 + 1 + 1 + 1 = (1 + 1 + 1) + (1 + 1)

the commutative rule for addition m+ n = n+m can be proved. However, this line
just proves that 2 + 3 = 3 + 2; the general formula contains an infinity of statements
which must either be taken as an axiom or proved by induction, say, from Peano’s
system of axioms. But the authors think that “the question is if we get a more clear
idea of the natural numbers from the Peano axiom system than from our intuitive
feeling” (p. 229).

In Chapter 8, on Euclid, the proof of Pythagoras’ theorem on page 88 uses the
properties of similar triangles, which are explained on page 91 (“Euclid says . . . ”)
without proof, which is left as exercise 8.4, while on page 99 we read that Euclid
needed six books (!) to arrive at a rigorous proof of this result. Cartesian coordinates
are introduced on page 100, a second time on page 268, but are already used on page
93 for obtaining a “magic formula” for orthogonality which is proved again on page
281. What is declared to be “Euclid’s famous fifth axiom” is actually Euclid’s Propo-
sition I.29. “Euclidean geometry” is declared to concern “plane geometry” (as if the
hyperbolic plane would not be flat) and “non-Euclidean geometry” would be a geom-
etry “in which parallel lines can meet,” which contradicts the definition of parallels.
Finally the statement “For Euclid, the diagonal of a square was just a geometric en-
tity” (p. 99) ignores the fact that two entire books of Euclid (books V and X) develop
complete theories of irrational numbers not very different from Dedekind cuts.

In Chapter 12 we encounter a major credo of the book, namely, to banish all usual
definitions of continuous and uniformly continuous functions “(attractive to many pure
mathematicians), but suffer[ing] from an (often confusing) use of limits” (p. 211). All
this is put into one sack by considering only the uniform Lipschitz continuity over an
interval I,

|f(x1)− f(x2)| ≤ L|x1 − x2| for all x1, x2 ∈ I,

and all subsequent results of the whole book are constantly formulated in terms of
this definition (“Lipschitz continuity gives a quantitative precise formulation, while
the connection in the standard definition is more farfetched. Right?”). This simplifies
perhaps some of the proofs, but also lowers the value of the whole treatise.

In Chapter 13, on limits, we learn that “the risk is thus that using the ε − N -
jargon, we may get confused and believe that something vague, in fact is very precise.
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So be cautious and don’t get fooled by simple tricks: the ε − N definition is vague
to the extent the dependence of N on ε is vague.” A very strange characterization of
Weierstrass’ analysis.

With Chapter 15 we arrive at the real numbers. This book explains them as
the set of infinite decimal expansions. It is true that this approach is very attractive
at first sight, and many theorems—for example, the convergence theorem of Cauchy
sequences—become nearly evident. But the price to pay is that algebraic operations
(and the proof of their laws) are not at all trivial. Another difficulty is that decimal
expansions are not free of traps. For example, the statement on page 190 that “when
|xi − xj | ≤ 10−N−1, then the first N decimals of xj are the same as the first N
decimals in xi” is wrong (counterexample: xi = 1.00002, xj = 0.99998, and N =
3). The extension of functions to irrational values of x leads the authors, being so
attached to decimal expansions, to the conclusion that “if some association of x-
values to values f(x) is not Lipschitz continuous, this association should not deserve
to be called a function. We are thus led to the conclusion that all functions are
Lipschitz continuous (more or less). This statement would be shocking to many
mathematicians. . . .” Indeed, it is! In Chapter 17 it is then declared (on page 230):
“We have defined R as the set of all possible infinite decimal expansions. . . . We may
say that we use a constructivist/intuitionist definition of R. The formalist/logistic
would rather like to define R as the set of all infinite decimal expansions . . . in what
we called a universal Big Brother style above.” This distinction is difficult to follow.

The definition of a differentiable function in Chapter 23 introduces the require-
ment that the error term should satisfy an estimation |Ef (x, x)| ≤ Kf (x)|x − x|2,
which is much stronger than the usual definition in mathematics and “which pleases
many mathematicians because of its maximal generality,” and “using a more demand-
ing definition we focus on normality rather than the extreme or degenerate.” This
definition does not simplify the proofs of the differentiation rules in Chapter 24, how-
ever, because Kf (x)|x − x| is a more complicated expression than ε. Furthermore,
this is a curious standpoint in a book which takes two pages (pp. 14–15) to emphasize
“Languages” and “Mathematics as the Language of Science.” Students who might
sometime want to read other mathematical literature will have to adapt their vocab-
ulary. But the first confusion arrives already in this work, in Volume 3, section 83.13,
where Weierstrass’ famous “nowhere differentiable function”

f(x) =
∞∑
n=1

a−n sin(bnx), a > 1, b > a,

is presented. First, the authors boldly replace Weierstrass’ “continuous” by “Lipschitz
continuous” and turn a true statement into a wrong one; second, it is stated that
“the series obtained by termwise differentiation does not converge, which indicates
that f(x) is nowhere differentiable” (a wrong conclusion—counterexample: the series
x
2 = sinx − 1

2 sin 2x + 1
3 sin 3x − . . . , when differentiated term by term, does not

converge, which does not hinder its limit function from being infinitely differentiable);
third, it is not said for which definition this function is nowhere “differentiable.”
Furthermore, Weierstrass’ condition a−1b > 1 + 3π/2 is not mentioned and is not
satisfied by the function drawn in Figure 83.7.

Chapter 26 prepares for the main tool of Volume 2, namely, various differential
equations, here nicely motivated with practical problems: Newton’s and Galileo’s laws
of motion, Hooke’s law, Newton’s (not Fourier’s!) law for heat flow, and population
growth.
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Volume 2. Volume 2 (Integrals and Geometry in Rn) starts by treating inte-
grals as the solution of the differential equation u′(x) = f(x). The whole theory is
formulated only for Lipschitz continuous functions, so that, for example, the mean
value theorem on page 464 receives a very strange formulation: “If u(x) is uniformly
differentiable on [a, b] with Lipschitz continuous derivative u′(x), then. . . .” Later
the exponential function is defined by u′(x) = u(x), and trigonometric functions by
u′′(x)+u(x) = 0. Accordingly, we assist four times at always the same existence proof
by Euler polygons (pp. 438–441, 493–498, 563–565, 579–580). All proofs use constant
stepsize sequences hn = 2−n; the fact that arbitrary step-size sequences converge to
the same result is mentioned in only one of these cases (on page 483). The last of
these proofs, for systems, uses vector notation, which, however, is introduced only
two chapters later. To sum up, the trigonometric functions are “defined” on page 505
by a definition which is based on a proof on page 580, which in turn uses notation
introduced on page 600, in order to verify the trigonometric identities (on page 509),
which are already known from page 97.

Chapter 30 on numerical quadrature considers only Riemann sum approximations
and the midpoint rule, both of which were already used by Archimedes. It thus brings
us back to pre-Newtonian times. Not even Simpson’s rule is mentioned.

Deliberately poor is also Chapter 37 on series, because “there are limitations to
both Fourier and power series and the role of such series is today largely being taken
over by computational methods. We therefore do not go into any excessive treat-
ment of series.” Absolutely convergent series are introduced, but their fundamental
property (independence of reordering) is not mentioned. Leibniz’s criterion is proved
and applied to the alternating harmonic series, but the (quite interesting) fact that
this sum is ln 2 is not mentioned, nor is Leibniz’s (still more interesting) series for π

4
mentioned.

Contrary to the pretention of the book, the treatment of linear algebra in Chapters
42, 43, and the beginning of Chapter 44 is very “pure mathematics.” Householder
reflections, the most important numerical tool, are never mentioned and the QR-
decomposition is obtained from the Gram–Schmidt orthogonalization, a numerically
unstable algorithm.

The method of steepest descent for minimization algorithms is explained in three
different places (pp. 662, 802, and 878) without cross-referencing. The drawing on
page 664 is wrong: the iteration points overshoot the optimal α values, perhaps to
make the zig-zag more drastic.

Towards the end of Volume 2, we observe a dramatic increase in difficulty of the
subjects. Differential equations of mechanical systems are derived from Lagrange’s
variational principle, which is explained by many examples but not justified. Then
come reaction-diffusion-convection initial-boundary value problems, whose stationary
versions are solved by Galerkin’s finite element method. Many of these equations are
just written down (on pp. 774–775), without any explanation and without references.

Volume 3. Volume 3 (Calculus in Several Dimensions) starts by defining the
differentiability of functions of several variables. As we may expect, the definition
requires a quadratic error estimation ‖Ef (x, x)‖ ≤ Kf (x)‖x − x‖2. It is then shown
that the existence of the partial derivatives is necessary. However, in none of the
subsequent examples is the original criterion for differentiability ever checked. If the
mean value theorem is then written in the form f(x) − f(x) = f ′(y)(x − x), it is
(rightly) mentioned that the y value “may be different for different rows of f ′(y),”



BOOK REVIEWS 745

but it is not mentioned that this precaution is not necessary in the subsequent norm-
estimation (“We may then estimate”) if it is cleverly done.

Further theorems are the inverse function theorem (p. 810), the implicit function
theorem (p. 811), and a theorem on the existence of level curves (p. 817). Each of
these theorems concludes with a statement saying that “the equation . . . has a unique
solution.” As was pointed out by an anonymous referee already four years ago, this
is not the correct formulation. A counterexample follows right after Theorem 55.1,
because the equation x2 + y2 = 1 has, of course, for fixed values of y with |y| < 1, two
solutions for x.

Chapter 56 is on the stability of initial value problems and has again very sloppy
formulations: it is said that “if all eigenvalues λi ≤ 0 then . . . we say that the solution
u is stable” (p. 826). It has been known since Poincaré that the limiting case �λi = 0
is dangerous; the easiest counterexample is u̇ = u3, u(0) = 0.

Chapter 57, on the solution of IVPs for ordinary differential equations, covers a
subject in which the reviewer is a specialist at heart. This chapter is entirely written
in the “Galerkin-jargon.” As the main workhorse for all applications is proposed the
cG(1) method of order 2, which when discretized becomes the implicit midpoint rule.
The quite interesting question, how the corresponding implicit equation should best be
solved, say, for nonstiff problems, is not clearly discussed. We also learn the existence
of dG(0), which corresponds to the implicit Euler method. Both methods appear
already in Cauchy’s work from 1824. The entire development of high quality methods
by Adams, Runge, or Kutta is not mentioned. At least G. Dahlquist, a Swedish
mathematician, could have been honored. For stiff problems, the authors discuss in
detail and with many examples the explicit Euler method combined with some small
stabilizing Euler steps (section 57.8). Thus this chapter leaves the impression that
nonstiff problems should be solved by an implicit method and that stiff problems
should be attacked by an explicit method—the world upside-down.

Chapter 64 treats double integrals. The access of Chapter 27, by solving a dif-
ferential equation u′ = f , is here useless and is quickly forgotten (on p. 448: “The
Fundamental Theorem of Calculus states that the integral of f(x) over the interval
[a, b] is equal to a limit of Riemann sums. . . ”; on p. 912: “Recall that we define the
one dimensional integral as

∫ 1
0 f(x) dx = limn→∞

∑N
i=1 f(x

n
i )hn . . . ”). The chapter

culminates in a proof of the formula for the change of variables in a double integral.
In the middle of this proof we read, “If g′(y) were constant over Ω̃i, and so g(y) were
linear on Ω̃i, then . . . ” and the proof then finishes after some lines. Nowhere is it
remarked what happens if this “If” is not satisfied. It is true that a rigorous proof
of this formula is a nasty undertaking and that the presented explanation is the best
way to explain the formula, but it is not a proof.

The subsequent chapters treat surface integrals, multiple integrals, and Gauss’
and Stokes’ theorems and enter the kingdom of partial differential equations and
their numerical solution by the finite element method, which is the true specialty of
the authors. This part is also very well supported by numerical software from the
Internet homepage.

Chapter 82, on analytic functions, starts with a nice explanation of complex
differentiability, characterized locally by translation, rotation, and change of modulus.
Then comes the following statement (p. 1108): “We shall shortly prove the surprising
fact that if f : Ω → C is analytic, then also f ′ : Ω → C is analytic with derivative
f ′′ : Ω → C, which is also analytic, and so on.” However, an inspection of the
following pages never shows any sign of such a proof. On the contrary, on page 1113
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we read “if we assume that u(x, y) and v(x, y) are twice differentiable. . . ” and later
“Now, one can show that the solutions of the Cauchy–Riemann equations indeed
must be twice differentiable. . . .” No sign of the duck? Next, on page 1114, “one
may ask if f ′(z) itself has a derivative in Ω, . . . . The plain answer is YES, which we
prove below.” A few lines later: “To answer the question posed, it is sufficient to
notice that if u(x, y) and v(x, y) satisfy the Cauchy–Riemann equations, then so do
all derivatives. . . .” But the existence of these derivatives is still not settled. The next
hope comes from Cauchy’s integral formula (“We prove that if f(z) is analytic. . . ”).
However, in the given proof appears a sentence “and K a bound for |f (3)(z)|, which
proves the desired result” (p. 1126). But no hypothesis on the existence of a third
derivative is formulated in Theorem 82.6.

Chapters 83 and 84 compare nicely Fourier series with Fourier transforms. We
read in the beginning that Fourier series arose from the solution of the heat equation
and “has influenced the development of mathematical analysis profoundly. . . . How-
ever, as any highly specialized tool or organism, these techniques have not been able
to adapt to the needs of a changing world with computational methods for nonlinear
differential equations taking over as work-horse in applications.” So, Fourier series
are here introduced without the beautiful motivation from the heat equation or the
wave equation by the idea of separating variables. Later, in section 83.14, the heat
equation is nevertheless mentioned, but the solution is just written down (“We ob-
serve that . . . satisfies. . . ”) and not derived. The Fourier coefficients are derived from
the orthogonality by integrating an infinite series term-by-term, without justification.
Many examples then illuminate the theory. A clever student may perhaps discover
the fact that in all these examples the Fourier coefficients cm(f) tend to zero with one
power of m−1 higher than stated on page 1154. The inversion formula (i.e., the con-
vergence of the Fourier series to f) is stated and proved only for periodic differentiable
functions “with piecewise Lipschitz continuous derivative.” Without justification, it
is then mentioned that the assumption on f could be relaxed to “piecewise differen-
tiable with piecewise Lipschitz continuous derivative.” It is not mentioned that even
Lipschitz continuity of f is sufficient (more precisely, bounded variation) and that this
has been known since 1829.

Summary. The authors present a rich amount of material, much of which belongs
to the standard mathematics education, in an at times unorthodox style. The book
suffers from a discrepancy between the high ambitions set out in the preface and the
actual realization of the program, which lacks care and attention in many places.

Perhaps we may summarize our overall impression of the book by the sentence:
the “body” is strong, but the “soul” is weak.

G. WANNER

University of Geneva

A Multigrid Tutorial. Second Edition. By
Williams L. Briggs, Van Emden Henson, and Steve
F. McCormick. SIAM, Philadelphia, 2000. $43.00.
xii+193 pp., softcover. ISBN 0-89871-462-1.

This is the ultimate textbook for providing
a basic grounding in the subject. Students
will find it very readable with just the right

amount of material necessary to reflect a
growing field. Completion of this book and
its exercises will serve as a launching platform
for more in-depth treatments of the subject
found in the references.

Chapters 1–5 are essentially the same
as in the first edition [1], with the following
notable improvements:
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• Key concepts are nicely boxed in the
exposition.

• More exercises are included for each
chapter. All exercises are carefully de-
signed to ensure the student under-
stands and can carry out his/her own
experiments to validate the concepts
presented.

• Exercises are organized by concept and a
related keyword to the concept appears
in a title to each exercise.

I have used Chapters 1–5 to comprise
half of a quarter course on iterative meth-
ods at the graduate level and as a self-paced
reading course for graduate students prior to
tackling more advanced treatments. In both
situations, students like the book and con-
tinue to keep it on their shelves.

Chapters 6–10 have been added since the
first edition to reflect the growing field of mul-
tilevel methods. The same exceptional care
has been taken with this more advanced ma-
terial to make it accessible to students. A nice
feature is that Chapters 6–10 can be studied
in any order once students have mastered
Chapters 1–5. I have found that these chap-
ters provide excellent coverage of important
topics for numerical analysis seminars that
can be given by either graduate students or
faculty.

Chapter 6 explains the full approxima-
tion scheme (FAS) for nonlinear problems.
Since the material in Chapters 1–5 deals en-
tirely with linear problems, this addition is
very important. The exposition follows natu-
rally from that used in the first five chapters.

Chapter 7 deals with selected applica-
tions that every graduate student studying
the field should encounter. Topics include
the treatment of Neumann boundary condi-
tions, anisotropic problems, semicoarsening,
line relaxation, full coarsening, variable mesh
problems, and variable coefficient problems.

Chapter 8 is an introduction to the al-
gebraic multigrid method. The treatment is
a beginning one that focuses mainly on sym-
metric positive definite M-matrices, but the
book references more advanced literature.

Chapter 9 walks the reader through the
tedious details of the fast adaptive composite
grid (FAC) method with very simple one- and
two-dimensional examples.

Chapter 10 develops a multigrid frame-
work appropriate for self-adjoint problems
that have been discretized by finite elements.
A very clear development derives the multi-
grid interpolation and restriction operators
and the coarse grid problem matrix directly
from the point of view of the minimization of a
functional. The first seven chapters relied on
finite difference discretizations, so the inclu-
sion of Chapter 10 gives the student a starting
point to understanding the vast literature de-
scribed from this significantly different point
of view.

The set of topics that advanced students
would not find in this book include, but are
not limited to, the following:
• A detailed treatment of nonsymmetric

problems, including choices for restric-
tion and prolongation operators.

• Local mode analysis that leads to an am-
plification matrix rather than the am-
plification factor of the elementary ex-
amples.

• Issues that arise in algebraic multigrid
for problems that do not have symmetric
positive definite M-matrices.
The recent book by Shapira [2] gives a

matrix-based treatment of these topics for the
more advanced reader.

REFERENCES

[1] W. Briggs, A Multigrid Tutorial, SIAM,
Philadelphia, 1987.

[2] Y. Shapira, Matrix-Based Multigrid: The-
ory and Applications, Kluwer Academic,
London, 2003.

LOYCE ADAMS
University of Washington

Higher-Order Finite Element Methods. By
Pavel Solin, Karel Segeth, and Ivo Dolezel. Chap-
man & Hall/CRC, Boca Raton, FL, 2003. $89.95.
xxii+382 pp., hardcover. ISBN 1-58488-438-X.

hp-finite elements refer to an optimized fi-
nite element method where the mesh size h
and the polynomial approximation degree p
are selected to minimize the discretization
error. Since optimal hp-finite element meth-
ods yield exponential convergence rates, they
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have gained much popularity over the last two
decades. Solin, Segeth, and Dolezel have suc-
ceeded in achieving their stated goal of pro-
viding the reader with a set of tools to solve
partial differential equations using higher or-
der finite element approximations.

Although the authors assume that the
reader is familiar with the basic finite ele-
ment concepts, they include an introduction
to the method in Chapter 1. The authors
define the function spaces H1, H(curl), and
H(div) as well as other basic concepts. In
the last section they illustrate the finite ele-
ment method on a two-point boundary-value
problem.

Chapter 2 shows several hierarchic mas-
ter elements and their corresponding shape
functions. The authors show popular master
elements in two and three dimensions and use
the De Rham diagram to construct the shape
functions in H(div) and H(curl) needed to
solve Maxwell’s equations.

Chapter 3 shows how to construct H1-,
H(curl)-, and H(div)-conforming finite el-
ement approximations on uniform meshes,
locally refined meshes allowing for irregular
nodes and edges, and hybrid meshes. The
authors discuss orientation of edges and faces
and assembling procedures in addition to
other implementation issues.

Chapter 4 is devoted to high-precision
numerical quadratures for one-, two- and
three-dimensional elements. The book pro-
vides tables of nodes and weights listing 10
significant digits or more (the accompanying
CD has quadratures tabulated to 15 signif-
icant digits or more). The chapter begins
with a helpful discussion on how to select a
numerical quadrature.

Chapter 5 deals with methods for solving
the discrete finite element equations. Since
the emphasis is not on solving algebraic prob-
lems, the book contains a brief discussion
of several methods to solve algebraic prob-
lems such as direct and iterative (MINRES,
GMRES, and multigrid) methods for sparse
matrices. In the last section the authors dis-
cuss methods for solving initial value prob-
lems.

Chapter 6 is dedicated to hp-adaptive
strategies guided by global a posteriori er-
ror estimates. The book describes several
h-, p-, and hp-refinement procedures for
one- and two-dimensional problems. Goal-

oriented adaptive algorithms are also dis-
cussed in this chapter.

This book is a valuable addition to the ex-
isting literature on adaptive hp-finite element
methods [1, 2, 3] and provides the practitioner
with the necessary tools and techniques for
understanding and implementing high-order
hierarchic finite element methods. The book
contains many interpolation and finite ele-
ment error results without proofs.

Overall this is a useful and well-written
text. However, the book is not appropri-
ate for learning the basics of the finite el-
ement method nor for learning the conver-
gence proofs of finite element approximations.
I recommend the book for applied mathe-
maticians and practitioners using the finite
element method.

REFERENCES

[1] M. Ainsworth and J. T. Oden, A Posteri-
ori Error Estimation in Finite Element
Analysis, John Wiley, New York, 2000.

[2] I. Babuska and T. Strouboulis, The Finite
Element Method and Its Reliability, Ox-
ford University Press, New York, 2001.

[3] C. Schwab, p- and hp-Finite Element Meth-
ods, Oxford University Press, New York,
1998.

SLIMANE ADJERID
Virginia Polytechnic Institute

Oscillation Theory for Second Order Dy-
namic Equations. By Ravi P. Agarwal, Said R.
Grace, and Donal O’Regan. Taylor & Francis, Lon-
don, 2003. $80.00. viii+404 pp., hardcover. ISBN
0-415-30074-6.

There are numerous books on oscillation
theory for differential equations such as
[1, 2, 5, 6], to name but a few. This mono-
graph by Agarwal, Grace, and O’Regan is
an excellent addition to the existing litera-
ture. It covers topics related to oscillation
theory for differential equations with deviat-
ing arguments, neutral functional differential
equations, second order ordinary differential
equations, and impulsive differential equa-
tions.

This book is very well organized; be-
ing in the classical mathematical style, the
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presented material is divided into definitions,
theorems, proofs, lemmas, remarks, and ex-
amples. It is self-contained and consistent,
and it is easy to follow the presentation. Only
some background in calculus and differential
equations is required. One definitely does not
have to be a differential equations specialist
in order to follow this well-written, compact,
but thorough treatment.

In an effort to make this book available
to a wide audience of scientists, a first chap-
ter collects some basic results for second or-
der linear ordinary differential equations such
as Sturm’s comparison theorem and Picone’s
identity, and several fixed point theorems
are presented that are used in the remainder
of the book, e.g., Brower’s, Schauder’s, Ba-
nach’s, Krasnosel′skĭı’s, and Knaster’s fixed
point theorems. The remaining four chapters
deal with criteria for oscillation, nonoscilla-
tion, and various other asymptotic behavior
for solutions of the studied second order dif-
ferential equations.

This book can easily be used as a text-
book for a special topics course at the gradu-
ate level, and it can also serve as an encyclope-
dia and reference book on oscillation theory
for researchers in various fields. Finally, it
can be an inspiring source for advisors and
graduate students who are seeking topics for
their theses. Even though some of the mate-
rial has been studied for a long time, there
are still many open problems, and research
in the area is continuing and even rapidly
growing. A search on MathSciNet using the
word “oscillation” in the title produces 8707
hits. The three authors of this monograph,
Professors Agarwal, Grace, and O’Regan, are
well known and very active experts in this and
many other areas.

The title of the book can be interpreted in
several ways. The authors use the expression
“dynamic equation” in the sense of a collec-
tion of differential equations such as delay,
neutral, functional, ordinary, and impulsive
differential equations. On the other hand,
the study of “dynamic equations” is indeed
a mathematical subject, not very well known
among the mathematical community due to
its recent origin, but which is also connected
to the material presented in the monograph
under review. In fact, dynamic equations on
so-called “time scales” have been introduced
in order to unify the theories of differential

and difference equations and to extend them
to cases “in between.”

A time scale T is an arbitrary closed
subset of the real numbers R, and for func-
tions f : T → R a delta derivative f∆ may
be defined that has the following properties:
When T = R, f∆ equals f ′, the ordinary
derivative. When T = Z (the set of integers),
f∆ equals ∆f , the ordinary forward differ-
ence. Two important objects in the study
of time scales that are unbounded above are
the forward jump operator σ : T → T de-
fined by σ(t) = inf{s ∈ T : s > t} and the
graininess operator µ : T → [0,∞) defined
by µ(t) = σ(t) − t for all t ∈ T. Now one
can study equations that involve unknown
functions and their delta derivatives, i.e., so-
called dynamic equations. For example, one
of the main equations that is studied in the
book under review, in particular in Chapter
4, namely,

(1) (a(t)x′)′ + b(t)x = 0,

could be studied in the form of a dynamic
equation as

(2) (a(t)x∆)∆ + b(t)x = 0.

However, with such an equation one would
be unable to prove classical analoga for the
differential equation (1) in the dynamic equa-
tions setting. It turns out that even the well-
studied discrete version of (1),
(3)
ak+1xk+2−(ak+ak+1−bk)xk+1+akxk = 0,

does not fit into the form of (2). Instead one
should consider the equation

(4) (a(t)x∆)∆ + b(t)xσ = 0,

where xσ is defined as x ◦ σ. For dynamic
equations of the form (4), it is in fact possi-
ble to obtain standard results and oscillation
criteria that have results for differential equa-
tions (such as those presented in the book un-
der review) and also results for corresponding
difference equations as special cases. Further-
more, such dynamic equations contain not
only differential and difference equations as
special cases but also very different kinds
of equations because a time scale is allowed
to be any closed subset of the real numbers.
For example, so-called q-difference equations
are included, and when T is the collection
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of nonnegative integer powers of a number
q > 1, (4) takes the form

a(qt)x(q2t)

−
(
qa(t) + a(qt)− q(q − 1)2t2b(t)

)
x(qt)(5)

+ qa(t)x(t) = 0,

where t ∈ T.
Oscillation of the dynamic equation (4)

has been studied intensively in the recent
literature (see [3, 4]), but the book under
review does not contain any of those results;
in particular, it does not deal with difference
equations. For difference equations, see the
monograph [1] by the same three authors,
Agarwal, Grace, and O’Regan. The book un-
der review deals with differential equations
solely, and hence the connection to dynamic
equations is only a remote one in the sense
that differential equations are special cases of
dynamic equations for T = R.

Now, returning to the actual topic of the
monograph by Agarwal, Grace, and O’Regan,
the book covers oscillation results for differ-
ential equations of the following forms. In
Chapter 2, the second order functional differ-
ential equation

(6) (a(t)x′)′ + q(t)f(x(g(t))) = 0

is considered, where the functions occurring
are assumed to satisfy certain conditions; f
may be a nonlinear function, a is positive,
and q is either positive or negative. In later
sections of this chapter, damping and forc-
ing terms are added so that the most general
form appears as

(7) (a(t)x′)′ + p(t)x′ + F (t, x(g(t))) = e(t).

Special cases such as the Emden–Fowler equa-
tion or the Klein–Gordon equation are treated
as well. Chapter 3 covers nonlinear neutral
differential equations such as

d
dt

(
a(t)

d
dt

(x(t) + p(t)x(τ(t)))
)

(8)
+ q(t)F (x(g(t))) = 0,

and again, in later sections of this chapter,
damping and forcing terms are added to (8).
Equations with mixed type, i.e., in which both
advanced and retarded arguments occur, are
also studied. Chapter 4 is concerned with the
classical self-adjoint differential equation (1).

Standard results of this equation are already
contained in Chapter 1, so Chapter 4 offers
some results connected to conjugacy (rather
than disconjugacy) that are not easily acces-
sible in the literature. The Emden–Fowler
equation in both the sublinear and superlin-
ear cases is studied as well. Finally, Chapter
5 offers a treatment of impulsive delay differ-
ential equations in the form

x′(t) + q(t)x(t− τ) = 0, t 	= tk;
(9)

x(t+k )− x(tk) = pkx(tk),

where the numbers tk are the impulse points.
Each chapter concludes with a very nice

section on “Notes and General Discussions,”
followed by the bibliography for that partic-
ular chapter (i.e., this book has five different
lists of references). An extremely important
and nice feature is the inclusion of 82 exam-
ples throughout the book that serve well to
illustrate the presented theory. This mono-
graph opens research directions in various
ways: One could try to find analogues of the
results presented for difference equations or
q-difference equations, or, in more generality,
for dynamic equations on time scales. The
discrete case has already been well studied,
but although first steps and progress have
been made for dynamic equations, it will be
quite a while until time scale results corre-
sponding to the continuous theory presented
in this book are really investigated and an
“oscillation theory for second order dynamic
equations” is fully developed.
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Normal Forms andUnfoldings for Local Dy-
namical Systems. By James Murdock. Springer-
Verlag, New York, 2003. $69.95. xx+494 pp.,
hardcover. ISBN 0-387-95464-3.

Normal form theory is of fundamental impor-
tance in the study of dynamical systems. The
idea of simplifying a system in a vicinity of a
fixed point through a sequence of near iden-
tity changes goes back at least to Poincaré.
It has been of fundamental importance in
applications and has been developed into a
rich theory. Most introductory textbooks on
dynamical systems provide an overview of
the basic ideas of normal form theory. The
book under review aims to introduce both the
algebraic structure of the coordinate trans-
formations that are used in the normaliza-
tion and (to a lesser extent) the geometric
structure of the vector fields that are thus
obtained.

The book is written with a newcomer to
the field in mind. All sections start with a
careful motivation and conclude with remarks
and pointers to the literature. As in his earlier
book [4], the author takes the reader through
all the details of the arguments, frequently
pointing out obvious, and not so obvious, pit-
falls. This results in a relatively long book,
which, of necessity, covers only a fraction of
the results in the field. While a novice will
likely find this approach helpful, the expert
may find the book prolix.

After several examples that introduce
the main ideas of the monograph, certain
facts about finite-dimensional linear opera-
tors are considered. The discussion of the
Jordan canonical in Chapter 2, using the idea
of a chain basis important later in the book,
is the most lucid I have found to date. Al-
though the ideas are straightforward, this was

usually a topic I dreaded teaching in an ad-
vanced linear algebra course. This chapter
solves that problem.

The heart of the book is contained in
Chapters 3 and 4, which introduce linear and
nonlinear normal forms, respectively. Sev-
eral “formats” for the computation of normal
forms are presented. “Direct” formats involve
the direct application of either a single or a
sequence of near identity changes of coor-
dinates, while “generated” formats rely on
ideas from the theory of Lie groups. The di-
rect formats require less thought, but it is the
generated formats that give more insight into
the structure of the normalization algorithms
and the resulting normal form equations, and
are therefore emphasized.

At the heart of the normal form method,
regardless of format, is the analysis of the op-
erator adA = [·, A]. Roughly speaking, mono-
mials can be removed via near identity co-
ordinate changes if and only if they are in
the range of this operator. However, since
in general one can choose different bases for
the complement of the range of adA, normal
forms are not uniquely determined by the lin-
ear part of the vector field at a point. The
author refers to the different choices that can
be made as normal form “styles.” The dif-
ferent styles discussed in the second half of
Chapter 4, including the semisimple and sl(2)
styles introduced in [3] and [2], respectively,
lead to unique normal forms, each with its
own advantages. Chapter 4 concludes with
an introduction of “hypernormal forms.”

A reader interested in applications will
find the last two chapters of the book of
most value. The first part of Chapter 5 is
devoted to the description of various geomet-
rical structures that are preserved under the
flow of the truncated normal form (obtained
by removing terms above a certain degree).
As a consequence, the flow of the truncated
normal form is frequently easier to analyze
than the flow of the full equation. In the
second part of this chapter it is shown that,
under certain conditions, the truncated sys-
tem provides a good approximation to the
full equation over certain timescales. While
these results are probably known to most spe-
cialists, I have not seen them collected in this
way before.

The last chapter is an introduction
to bifurcation theory and provides another
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example of the utility of normal form the-
ory. Given the author’s careful exposition
a full treatment of even part of the theory
would have resulted in a far longer mono-
graph. This chapter is therefore limited to
the development of the theory that is suffi-
cient to treat several standard examples, with
the goal of motivating interested readers to
continue their study using other sources.

The reader who expects to learn the basic
ideas and techniques of normal form theory
will find this book rewarding. Its algebraic
approach is well suited to readers interested
in automated computations of normal forms.
Unfortunately, several interesting topics have
not been considered in the book. For instance,
normal forms for systems with symmetry or
diffeomorphisms are hardly mentioned. For a
different perspective on this monograph writ-
ten by an expert in the field, see [1].
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There are two main branches of stability the-
ory for discretizations of partial differential
equations: One is based on estimates of the
Fourier symbol of frozen coefficient problems
and is often called normal mode analysis or

GKS stability theory. See, for example, [1, 2].
The other, which is the subject of the book un-
der review, is often called the energy method.
Normal mode analysis applies to more general
problems, but is often very difficult to use.
The energy method applies to more specific
equations, which are, however, most impor-
tant in applications.

When discretizing a time-dependent
PDE, it is often useful to proceed (concep-
tually or actually) in two steps: First, dis-
cretizing in space, one obtains a method-of-
lines system, typically an ODE system such
as du/dt+Au = f(t) or d2u/dt2 +Au = f(t).
Here, for every time t, the unknown u(t)
is an element of a finite-dimensional Hilbert
space H of functions on a spatial grid, and
A : H → H is a linear operator. In a sec-
ond step, one discretizes time and replaces
the ODE system by difference equations such
as

(1)
1
τ
B(yn+1 − yn) +Ayn = φn

or

1
τ2 D(yn+1 − 2yn + yn+1)

(2)
+

1
2τ

B(yn+1 − yn−1) +Ayn = φn.

In general, the operators A, B, and D
will depend on time and on the time
step τ . Of course, they will also de-
pend on the space discretization that leads
to the method-of-lines system in the first
place.

Difference schemes are only useful if they
are stable, i.e., if one can estimate the solu-
tion y = (yn) by its initial data and the
right-hand side φ = (φn), and the estimate
does not deteriorate as τ → 0. The energy
technique makes systematic use of symmetry
and definiteness properties of the operators
A, B, and D, as inherited from the PDE, to
establish such stability estimates.

The book under review contains eight
chapters and consists of two parts. (The di-
vision into two parts is due to the reviewer.)
After the introduction, Chapters 2 to 5 deal
rather abstractly with two-level and three-
level difference equations such as (1) and (2)
and give conditions on the operators involved
that lead to stability estimates. Here the pre-
sentation is rigorous and relentlessly abstract.
One example appears on page 52, and only
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in a short sentence is it mentioned that the
assumed form A = T ∗T is often used for dis-
cretizing div(k gradu). Otherwise, the reader
has to wait until Chapter 6, starting on page
149, for any motivation and all the different
assumptions of the stability theorems.

Beginning with the second part in Chap-
ter 6, one sees stability theory at work and
the presentation is directly oriented towards
the numerical solution of PDEs. In Chapter
6, the reader not only finds standard appli-
cations to diffusion, convection-diffusion, and
wave equations, but can also read about diffu-
sion equations with discontinuous coefficients,
equations with rough right-hand sides and
rough solutions, and hyperbolic and parabolic
equations that are coupled at an interface.
The general abstract formulation of the sta-
bility theory presented in Chapters 2 to 5
pays off. There is also a treatment of conser-
vative discretizations of the KdV equation,
but the main emphasis is on linear prob-
lems.

In Chapter 7, called Schemes on Adap-
tive Grids, the authors consider the equations
ut = (kux)x + f(x, t) and utt = (kux)x +
f(x, t) and assume that the solution behaves
badly in some (known) region of space-time,
possibly a moving singularity. This calls for
local grid refinements. The stability issues for
the resulting difference schemes are investi-
gated, again relying on the results of Chapters
2 to 5.

The final Chapter 8 is on domain de-
composition for nonstationary problems. A
diffusion equation and a wave equation in a
rectangle are considered as model problems.
The issues addressed here are of current re-
search interest. Unfortunately, Figures 8.1
and 8.2 are wrong and, at times, the presen-
tation loses focus.

Nevertheless, in summary, the book gives
a rather comprehensive treatment of the en-
ergy method to investigate stability of differ-
ence methods applied to diffusion and wave
equations. It covers an important topic of
numerical analysis, complementing [1, 2].

My main criticism regards the use of the
English language, which is frequently inade-
quate. Quite a few sentences only make sense
after one substitutes words like restriction
for contraction, jump condition for conjuga-
tion condition, etc. The book deserved better
editing.
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Birkhäuser-Verlag, Basel, 2003. $149.00. xx+
571 pp., hardcover. ISBN 3-7643–085-X.

Matrix Riccati equations arise naturally as
one of the major mathematical equations
in many applications from control, filtering,
game theory and others. They are nonlin-
ear (quadratic) matrix equations but they
can nevertheless be analyzed and solved us-
ing methods from linear algebra. These facts,
their great importance in many applications,
and the availability of well-studied tools has
led to an immense interest and an explosion
in the number of publications on this topic
in the last 50 years. Moreover, since the ap-
plications come from many different areas of
engineering, and the mathematical theories
and methods used range from elementary ma-
trix theory, analysis of differential equations,
geometric theory, and operator theory to the
explicit construction of numerical methods,
it is nowadays very difficult to keep track of
the available results of this topic.

In such a situation a monograph that
covers a wide range of the mathematics of
matrix Riccati equations is urgently needed,
but to write it is a very difficult task. Since
the fundamental work of Reid [6] on Ric-
cati differential equations in 1972, not many
substantial monographs devoted to this topic
have appeared. Although Riccati equations
are discussed in many books on systems and
control, I would say that the book by Lan-
caster and Rodman [4] (see also SIAMReview,
38 (1996), p. 694) has so far been the most
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fundamental recent work on this topic from
the theoretical (mostly algebraic and geomet-
ric) point of view. It, however, mostly dis-
cusses symmetric (Hermitian) algebraic Ric-
cati equations.

Since [4] is relatively recent, the question
may be: Was there really a need for another
book on this topic? Looking at the new book
by Abou-Kandil, Freiling, Ionescu, and Jank,
the answer to this question must certainly
be yes! First, the new book covers a much
different range of topics than [4]. The new
book really complements [4] in many ways,
but not only that, it also adds a different,
more analytically oriented point of view.

A short overview of the content may be
appropriate. After two introductory chap-
ters, global aspects of Riccati differential and
difference equations are discussed. Then the
particular case of Hermitian Riccati differen-
tial equations is followed by a chapter on pe-
riodic Riccati equations. Nonsymmetric and
generalized Riccati equations, as well as cou-
pled systems of Riccati equations, are also
discussed in detail. Finally two sections are
devoted to applications in robust control and
Nash equilibria in differential games.

For everyone who is interested in the
topic of Riccati equations and their appli-
cations to problems from control, signals,
and systems I suggest obtaining this mono-
graph. Together with [4] it covers the state-
of-the-art in the theoretical analysis of finite-
dimensional matrix Riccati equations of all
flavors. But, although there is little over-
lap with [4] and together they have more
than 1000 pages, still important topics like
numerical methods (see, e.g., [1, 5]), infinite-
dimensional Riccati equations (see, e.g., [3]),
and perturbation theory (see [2]) are covered
only tangentially. This shows the broadness
of this topic and why this book was really
needed.

My only point of criticism with this book
is that a few more examples and illustrations
would have improved the usefulness of the
book even further.

In summary, this is a very well written
and extremely useful book. It should be in-
cluded in the library of everybody working on
Riccati equations, and in all areas of control,
signals, and systems. Together with [4], it
will be the standard reference book in this
area in the future.
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Capture Dynamics and Chaotic Motions in
Celestial Mechanics: With Applications to
the Construction of Low Energy Transfers.
By Edward Belbruno. Princeton University Press,
Princeton, NJ, 2004. $49.95. xx+211 pp., hard-
cover. ISBN 0-691-09480-2.

In January of 1990 the Japanese ISAS Insti-
tute launched a linked pair of small spacecraft
into a nearly elliptical orbit about the earth.
The larger one, MUSES-A, was supposed to
remain in an earth orbit while conducting
scientific experiments and commutating with
the smaller, MUSES-B. The small craft B
was to unlink from the larger craft A and
then go into lunar orbit. For some reason
contact with the lunar probe B was lost and
its mission failed.

In order to partially save the mission the
ISAS Institute decided to try to get the larger
MUSES-A into a lunar orbit. The problem
was that A did not have enough thrust to
be put into a lunar orbit that was computed
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by the traditional methods of celestial me-
chanics. It was never designed to go to the
moon.

By June 1990, the author, Ed Belbruno,
and his collaborator, J. Miller, at the Jet
Propulsion Laboratory designed a low-energy
transfer orbit which would take MUSES-A
from its near earth orbit to a near lunar
orbit. Thus, they rescued the Japanese lu-
nar mission. Their solution used the tools
of modern dynamical systems theory. This
book guides the reader to an understanding
of their solution.

The first chapter is an introduction to the
N -body problem and classical results: the
Kepler problem, the restricted three-body
problem, regularization, and collision. Most
of this chapter is well-known background
material. The exception is the last section,
where the author gives a nice presentation of
the equivalence of geodesic flow on a sphere
and the Kepler problem. This is the regu-
larization of the Kepler problem of Moser,
Belbruno, and Osipov.

The second chapter presents the basic
theory of Hamiltonian dynamical systems:
fixed and periodic points, hyperbolicity,
KAM theory, and Aubrey–Mather theory.
These are some of the big tools in the the-
ory which require lengthy proofs, but the
reader will have to go elsewhere to find
them.

The final chapter, which takes up nearly
half the book, is the raison d’être for the
book. The classical approach to transferring
a space craft from a near earth orbit to a
near moon orbit starts by piecing together
Kepler orbits of the earth-craft system and
Kepler orbits of the moon-craft system. This
is the first approximation to what is called
the Hohmann transfer orbit. It was used to
send men to the moon and back. It is a
simple method to understand and easy to
implement, but it does not yield a low-energy
orbit.

The simplest model for a low-energy
transfer is the circular restricted three-body
problem, which was studied theoretically by
Conley and his students in the 1960s and
1970s. The restricted three-body problem has
two bodies of finite mass (the earth and moon)
moving on circular Kepler orbits about their
center of mass and a third body of zero mass
(the space craft) moving under the gravita-

tional attraction of the two finite bodies. In
a rotating coordinate system the finite bod-
ies are at rest and the system admits an
integral (which we can think of as energy).
For very negative values of the integral the
craft is trapped in the potential well about
one or the other of the finite masses. As the
value of the integral increases, the potential
wells increase and then a neck develops be-
tween them. For values of the integral just
above where the neck is formed, a low-energy
transfer is possible. In the neck there is an
unstable periodic orbit with a stable and an
unstable manifold. There are orbits which
enter the neck near the stable manifold and
exit near the unstable manifold. Such an or-
bit moves from the region around the earth to
the region around the moon with near min-
imal energy. The hard part is finding such
an orbit with the desired limit as time tends
to plus/minus infinity. To that end the au-
thor defines what is called the “weak stability
boundary” and devotes a considerable num-
ber of pages to its definition, properties, and
computation.

Finally, a more realistic model is consid-
ered which is a restricted four-body problem
consisting of four point masses: P1, the earth;
P2, the moon; P3, the space craft; and P4, the
sun in an earth-based coordinate system. As-
sume m4 � m1 � m2 and m3 = 0. The sun
moves on a slightly elliptical but large orbit
about the center of mass of the earth–moon
system, and the earth–moon system moves
on slightly elliptical orbits about their center
of mass. The actual trajectories of the sun,
earth, and moon are to be taken from their
ephemeris.

This is a how-to book on how to con-
struct a low energy orbit from the earth to
the moon by the man who did just that to
save the Japanese space mission in 1990.
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Advanced Arithmetic for the Digital Com-
puter. Design of Arithmetic Units. By Ulrich
W. Kulisch. Springer-Verlag, Vienna, 2002. $34.95.
xii+141 pp., softcover. ISBN 3-211-83870-8.

In spite of phenomenal advances in speed
and memory size of computers during the
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past several decades, the basic arithmetic
operations provided in hardware have not
changed much. Standard floating-point arith-
metic in hardware still has the same short-
comings it had 40 years ago. Some changes
are overdue. Ulrich Kulisch has designed new
arithmetic units for more advanced computer
arithmetic with improvements in both accu-
racy and speed. With only a modest increase
in the complexity of hardware design, his
new design of arithmetic units would speed
up computations while also eliminating the
most serious sources of rounding error such
as catastrophic loss of significance in sub-
traction of nearly equal numbers, especially
during the computation of inner products of
vectors. This is done by having a long adder
in hardware similar to the way old electrome-
chanical calculators did, so that the multiply
and add instruction is effectively carried out
in fixed-point arithmetic without rounding
until the final result is obtained. Details are
clearly explained in the first of three chap-
ters.

The special problem of rounding near
zero is dealt with rigorously in a short second
chapter.

A major part of the exposition, Chapter
3, is devoted to the question of how to design
hardware for interval arithmetic as fast as
floating-point arithmetic, with two operation
units and a few multiplexers and compara-
tors. Rounding modes have been added in
recent years, but current hardware design
requires setting the rounding mode before
each interval operation, which greatly slows
the process.

The proposal is to provide, for example,
multiply and round away from zero as a single
hardware operation. In all, 15 basic opera-
tions are required instead of the usual 12. As
in the rest of the volume, details are given
clearly and rigorously.

Kulisch has shown how to design this
kind of advanced computer arithmetic in
hardware. At small cost, the benefit would be
to greatly improve the reliability of numerical
computation.

Manufacturing such arithmetic units is
an idea whose time has come. It remains
only to see who does it first.
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Tools for Computational Finance. By Rudi-
ger Seydel. Springer-Verlag, Berlin, 2003. $44.95.
xiv+224 pp., softcover. ISBN 3-540-40604-2.

Computational techniques for valuing fi-
nancial derivatives are increasingly popular
among financial practitioners and academics
alike, as efficiency and speed become more
and more important. Many financial engi-
neering books to date focus on simulation
techniques, and very few on other computa-
tional aspects of finance, such as finite differ-
ence or finite element methods. This book at-
tempts to fill this gap by providing a broader
practical introductory exposition of financial
mathematics with minimal mathematical for-
malism and a focus on readability. This is the
first book I am aware of that has devoted an
entire chapter to using finite element methods
in finance.

The book is divided into four main sec-
tions: financial and stochastic background,
tools for simulation, partial differential equa-
tions for options, and further requisites and
additional material. Each chapter is con-
cluded with very helpful comments and nu-
merous exercises. The book is written from
an applied mathematics standpoint. Where
possible, the author provides a corresponding
numerical algorithm. Many mathematical re-
sults are laid out without derivation or a sense
of how one gets there. The first few chapters
are very straightforward, easy to read, and
cover topics that are standard in most finan-
cial engineering books.

In Chapter 4 on finite difference meth-
ods, the author discusses three ways of nu-
merically solving PDEs, the explicit, implicit,
and Crank–Nicolson methods. The discussion
on stability or accuracy is very brief, making
the book very much a “tool kit.” This chap-
ter is very well illustrated by the valuation
of American options as a free boundary-value
problem accompanied by several figures and
several numerical algorithms.

Chapter 5 on the finite element method
is very attractive in the sense that not many
books discuss this method. Yet, I found
this chapter disappointingly short and with-
out any extensive examples of applying the
method. In concluding this chapter the au-
thor writes, “finite-element methods are fre-
quently used in the area of computational



BOOK REVIEWS 757

finance,” but he provides only one reference.
This chapter actually leaves the unsophisti-
cated reader wondering about the usefulness
of finite element methods in finance.

The last chapter, on pricing exotic op-
tions, is really an introduction to the upward
schemes and higher resolution schemes in or-
der to cope with the complexity of valuing
path-dependent options. Like the previous
chapter, one gets the feeling that this chap-
ter would have been better served with a few
more examples.

This book is very easy to read and one
can gain a quick snapshot of computational
issues arising in financial mathematics. Re-
searchers or students of the mathematical
sciences with an interest in finance will find
this book a very helpful and gentle guide to
the world of financial engineering. We rec-
ommend that you read this book alongside
Baxter and Rennie [1] for the mathematical
formalism and Tavella and Randall [2] for a
more extensive discussion on finite difference
methods.
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A Primer of Analytic Number Theory. By J.
Stopple. Cambridge University Press, Cambridge,
UK, 2003. $35.00. xiv+383 pp., softcover. ISBN
0-521-01253-8.

This book is an elementary introduction to
the subject of analytic number theory. The
subject of number theory is as old as recorded
history. Emerging in the Babylonian civi-
lization, then meandering through Egyptian,
Greek, Indian, Chinese, and Arabic civiliza-
tions, it re-emerged in the European Renais-
sance period with an exotic and sinuous his-
tory. It would be no exaggeration to say that

it played a seminal role in the development of
modern mathematics and, on a larger scale,
the modern scientific tradition. The book un-
der review tries to capture some of this theme
in its historical interludes.

The distribution of prime numbers is still
not completely understood. The celebrated
prime number theorem tells us that the num-
ber of prime numbers ≤ x, often denoted
π(x), is asymptotically x/ log x as x tends to
infinity. This theorem was first conjectured
by Gauss in 1792 (during his teenage years)
when he wrote to the astronomer Encke, pre-
dicting that

lix :=
∫ x

2

dt

log t
∼ π(x).

If we integrate by parts, we find that the first
term in the asymptotic expansion is indeed
x/ log x. Almost a century later, in 1896,
Hadamard and de la Vallée Poussin proved
the prime number theorem, essentially devel-
oping a program Riemann had outlined in
1860 and supplementing it with some inge-
nious new ideas.

In his 1860 paper, Riemann defined his
famous ζ-function as a function of a com-
plex variable that has the property that for
�(s) > 1,

ζ(s) =
∞∑
n=1

1
ns
.

As Riemann emphasized, its connection with
prime numbers is on account of the identity

∞∑
n=1

1
ns

=
∏
p

(
1− 1

ps

)−1

,

where the latter product is over prime num-
bers p. This identity is an analytic formu-
lation of the fact that every natural number
can be written as a product of prime numbers
uniquely. The celebrated Riemann hypothe-
sis (still unresolved) predicts that if ζ(s) = 0
for some s in the region 0 < �(s) < 1, then
�(s) = 1/2. This is equivalent to the fol-
lowing stronger form of the conjecture of
Gauss:

π(x) = lix+O(x1/2 log x).

This is listed as a million dollar prize prob-
lem by the Clay Mathematics Institute (see
http://www.claymath.org/prizeproblems).



758 BOOK REVIEWS

Stopple’s book takes us literally from
scratch to the point where we can understand
the Hadamard and de la Vallée Poussin proof
of the prime number theorem. The second
half of the book discusses Dirichlet’s theo-
rem about primes in arithmetic progressions.
Still, the presentation is accessible to un-
dergraduates and sprinkled with interesting
historical anecdotes. The book culminates
with a discussion of the theorem by Goldfeld,
Gross, and Zagier giving an effective lower
bound for the class number of an imaginary
quadratic field. This theorem, certainly one
of the Himalayan achievements of 20th cen-
tury number theory, requires for its solution
an extensive treatment of the theory of ellip-
tic curves and modular forms. It would be
difficult to give such an exhaustive treatment,
and so the author takes a brief excursion into
the theory of elliptic curves. He motivates
this topic by first considering the “simpler”
equation

x2 −Dy2 = 1,

whose history goes back to the work of Brah-
magupta in 6th century A.D. India. It is
erroneously referred to as the Pell equation,
even though scholars know that Pell had little
to do with it. The theory of elliptic curves
would include the study of cognate equations
such as x3 − Dy2 = 1, and such equations
played a fundamental role in the Goldfeld–
Gross–Zagier theorem referred to above.

In summary, this is a well-written book
at the level of senior undergraduates. My only
criticism is that in many places the histori-
cal treatments are incomplete. For example,
in Chapter 5, where the prime number theo-
rem is first discussed, Gauss is nowhere men-
tioned. Pell’s equation is surveyed in Chapter
11, but nowhere is the work of Brahmagupta
and others even alluded to. To deflate some
of this criticism, the reader would do well
to augment this study with André Weil’s ex-
cellent book, Number Theory, An Approach
through History (Birkhäuser Boston, Cam-
bridge, MA, 1984).
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Basic Classes of Linear Operators. By
I. Gohberg, Seymour Goldberg, and Marinus A.

Kaashoek. Birkhäuser-Verlag, Basel, 2004. $89.95.
xviii+423 pp., softcover. ISBN 3-7643-6930-2.

With a name like Gohberg–Goldberg–
Kaashoek, it has got to be good. But let me
count the ways. If you are interested in learn-
ing the basic theories of Hilbert and Banach
spaces together with the well-known opera-
tors that act on them, this book is for you. It
is intended for advanced undergraduates and
beginning graduate students in mathemat-
ics. It begins with inner product and Hilbert
spaces and eventually covers general Banach
spaces. If you are looking for the latest results
in operator theory, you will be disappointed.

The volume is actually a second edition of
Basic Operator Theory by Gohberg and Gold-
berg. It is intended to be an introduction to
Classes of Linear Operators, Vols. 1 and 2
by the three authors. It differs from the first
edition in several ways. In particular, several
types of operator are added, such as Laurent,
Toeplitz, Fredholm, and singular integral op-
erators. Exercises and examples have been
added. Almost all of the text is devoted to
linear operators. There is a small chapter at
the end that discusses fixed-point theorems
for nonlinear operators. The main tool used
there is the contraction mapping principle.

In previous generations, integral oper-
ators were considered fundamental tools of
analysis. In fact, their study led to the for-
mulation of spectral theory for bounded op-
erators. Researchers devoted careers to the
analysis of integral operators, and practically
every university offered a course, at the grad-
uate and undergraduate level, devoted to in-
tegral equations. Those days are gone, and
differential equations have won, even though
many of them are solved by first converting
to integral equations and then solving. This
situation is lamented by the authors (and the
reviewer), especially since integral operators
make perfect examples of bounded operators
on a Hilbert or Banach space. The authors
(and the reviewer) were determined to cor-
rect this situation by illustrating the theories
through studying many examples of integral
operators.

Since the reviewer has written a book
[1] on the same topic, it might be instructive
to indicate the similarities and differences
between the two texts. Both are written
for advanced undergraduate and beginning
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graduate students. Both assume only a back-
ground in linear algebra and advanced calcu-
lus. Both limit the presentation to Banach
and Hilbert spaces. There are good rea-
sons for this latter choice. First, there is
much useful information that can be learned
concerning these spaces and operators act-
ing on them. Second, the vast majority of
mathematical problems arising in analysis
and applications can be analyzed within the
framework of these spaces. Third, it would
be very confusing to students at this stage to
introduce more types of spaces. We did not
want to overwhelm the student with highly
technical and advanced methods.

The types of operators studied are similar
to those considered in [1]. The approach of the
present authors is to present each topic in an
orderly fashion and expand upon it as needed.
The approach in [1] is not so orderly. Rather,
problems are introduced in [1], and it is shown
how functional analysis can be used to solve
them. New concepts and methods are intro-
duced only as needed to solve the problems.
The present authors study Hilbert space op-
erators throughout most of their book. Then
Banach spaces are introduced to cover oper-
ators that do not require Hilbert space struc-
ture or cannot be dealt with in a Hilbert
space setting. In [1], everything is studied
within a general Banach space setting until
we reach a point when Hilbert space structure
is needed.

The two books do not overlap completely.
There are topics that are covered in one, but
not in the other. But the level of presenta-
tion is almost identical, although the book
under review requires a bit more background
in linear algebra and calculus than [1].

In both cases Lebesgue integration and
the Lp spaces cause an awkward situation.
On the one hand, these spaces are ideal ex-
amples of Banach spaces (with L2 an ideal
example of a Hilbert space). On the other
hand, the student is not expected to know
about Lebesgue integration. Under the cir-
cumstances, there is no ideal way of handling
the situation. The authors chose to confront
the situation head on. The reader is told,
“This is the definition of the space Lp, and
if you are unfamiliar with it, you can go to
a reference on mathematical analysis for the
proofs of the theorems that are described in
an appendix.” In [1], the reviewer chose an-

other approach without using measure the-
ory.

The text is well written, clear, and read-
able. (However, it is not free of typos.) A
student at the specified level will have no
difficulty understanding the presentation.

Of course, the reviewer is prejudiced in
favor of his own text [1], but he can give
nothing but praise for this book.
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Regularity Theory for Mean Curvature
Flow. By Klaus Ecker. Birkhäuser Boston, Boston,
2004. $129.00. xiv+165 pp., hardcover. ISBN 0-
8176-3243-3.

It is a rare occurrence when new break-
throughs in pure and applied mathematics
occur simultaneously and generate enormous
excitement. For the last 20 years, the compu-
tational and theoretical study and application
of generalized motion by mean curvature and
more general curvature flows have had enor-
mous impact in diverse areas of pure and ap-
plied mathematics. Klaus Ecker’s new book
provides an attractive, elegant, and largely
self-contained introduction to the study of
classical mean curvature flow (initiated by
Huisken [29, 30]), developing some fundamen-
tal ideas from minimal surface theory (max-
imum principles and local geometric esti-
mates, monotonicity formulas, blow-ups and
self-similar solutions, etc.), all with the aim
of proving a version of Brakke’s regularity
theorem [10] and estimating the size of the
“singular set.” In order to minimize techni-
calities, the discussion is basically limited to
classical flows up until a first singularity de-
velops. This makes the book very readable
and suitable for students and applied mathe-
maticians who want to gain more insight into
the subtleties of the subject. Let us backtrack
now and define the classical flow.

A smooth embedded n-dimensional hy-
persurface Mn ⊂ Rn+1 is said to be moving
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by (classical) mean curvature flow if there is
a family of smooth embeddings Ft = F (·, t) :
Mn → Rn+1 with velocity ∂

∂t
F (p, t) =

*H(F (p, t)) for p ∈Mn and 0 < t < t∗, where
t∗ is either the first time a singularity devel-
ops or the extinction time when Mn disap-
pears. If ν is (say) the inner unit normal of
an oriented hypersurface M , then *H = Hν
is the mean curvature vector and H is the
mean curvature of M with respect to ν (posi-
tive for a mean convex hypersurface). If ∆t is
the Laplace–Beltrami operator on the moving
hypersurface Mt = Ft(Mn), then the mean
curvature flow can be rewritten (up to diffeo-
morphisms of Mn) as

∂

∂t
F = ∆tF,

which formally resembles the heat equation,
but is really a degenerate (because of the
diffeomorphism group of Mn) quasi-linear
parabolic system of PDEs. It is well known
(see [22, 16]) that for a reasonably smooth
initial hypersurface M0, there is short-time
smooth existence of the flow. This is the
smoothing property of parabolic equations
and explains why the mean curvature flow
is used in image reconstruction. However, as
we explain below, singularities do develop if
n ≥ 2.

The mean curvature vector points to the
“inside” of M and, according to the classical
first variation of area formula (see [1] for a
very general version), is the direction in which
area decreases most rapidly. Thus the mean
curvature flow is the gradient flow for the
area functional and so is an extremely natu-
ral and important geometric flow related to
the motion of phase interfaces and (surpris-
ingly) the asymptotics of reaction diffusion
equations such as the Allen–Cahn equation
(see [18, 8, 34] and the references therein).

The one-dimensional mean curvature
flow or curve-shortening flow was introduced
by Mullins [38] in his 1956 paper to model
the movement of grain boundaries. As far as
I can tell, it received scant attention in both
the pure and applied math communities. It
was not until the early 1980s that Gage and
Hamilton [20, 21, 22] studied the classical
curve-shortening flow for a smooth strictly
convex curve and proved that the solution re-
mains smooth and strictly convex and shrinks
to a “round point”; that is, after rescaling to

a fixed area, it converges smoothly to a cir-
cle. This is a beautiful and difficult result
but is very plausible. In a remarkable paper,
Grayson [25] proved the highly unintuitive
result that an arbitrary embedded smooth
curve remains smoothly embedded and after
finite time becomes strictly convex and so
(by Gage and Hamilton) shrinks to a round
point.

Inspired by the work of Hamilton on the
Ricci flow (see [27, 28]), Huisken [29], in a
groundbreaking paper, introduced differen-
tial geometric methods to study the classi-
cal mean curvature flow in higher dimensions
and proved that the Gage–Hamilton result for
strictly convex hypersurfaces remains valid.
However, Grayson’s result is definitely false,
as one can show that a suitably thin ax-
isymmetric “dumbbell” must develop a neck
pinch. How, then, can we continue the flow
and define a generalized mean curvature flow
past the onset of singularities? Even before
the systematic study of the classical mean
curvature flow was undertaken, Brakke [10]
initiated the study of generalized mean cur-
vature flows using methods of geometric mea-
sure theory and proved “almost everywhere
regularity” under certain conditions. Because
Brakke’s definition was quite difficult to work
with (as it suffers from both nonuniqueness
and is nonconstructive), his seminal work lan-
guished from inattention.

Many applied mathematicians are now
well-informed about the level set formulation
of the generalized mean curvature flow intro-
duced by Osher and Sethian [45, 42] (see also
[40]) as a numerical method which could han-
dle the formation of singularities and changes
of topology. Motivated by this work, Evans
and Spruck [15, 16, 17, 19] and Chen, Giga,
and Goto [11] gave a theoretical justification
of the level set method using the notion of
viscosity solutions of PDEs [13]. Later Il-
manen [35] clarified and modified Brakke’s
construction and related it to the level set
approach (see also Evans and Spruck [19]).
In doing so, Evans and Spruck and Ilmanen
showed that for almost every initial M0 and
for almost every t, the generalized flow Mt

is smooth almost everywhere. Recent work
of White [52, 53] and Huisken and Sinestrari
[31] makes substantial improvements in this
regularity in the case of mean convex M0.
Stimulated by these works, many other ap-
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proaches to defining generalized flows have
been developed, such as set theoretic motion
(see [48, 5, 23]), DeGiorgi’s definition of mini-
mal barriers (see [9]), and the time step varia-
tional method of Almgren, Taylor, and Wang
[3], to name a few. Roughly speaking, all
of these definitions yield the same weak flow
(which agrees with the smooth classical mean
curvature flow as long as it exists) unless the
level set flow “fattens” (develops an interior);
see [15] for examples and [50, 23] for a dis-
cussion of various definitions. The fattening
of the level set flow represents nonunique-
ness of possible continuations of the flow past
a singularity. In this regard, Ilmanen and
White have announced the construction of a
smooth embedded initial surface M0 (of very
high genus) for which fattening occurs. In this
case, computations may randomly choose one
possible flow.

An important remaining task for math-
ematicians, then, is to understand when fat-
tening occurs, the nature of the possible sin-
gularities, and a better estimation of the size
(Hausdorff dimension) of the singular set.
For the applied mathematician, the task is
to use these new mathematical tools to help
solve impossible (ill-posed) problems. It is
clear that new generations of engineers and
applied mathematicians need to understand
more and more geometric analysis (differen-
tial geometry, geometric measure theory, par-
tial differential equations) in order to better
carry out their research. Expository research
monographs, such as Klaus Ecker’s book, are
an invaluable aid in this endeavor.
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Noncommutative Dynamics and E-Semi-
groups. By William Arveson. Springer-Verlag, New
York, 2003. $79.95. x+434 pp., hardcover. ISBN
0-387-00151-4.

This book is a self-contained research mono-
graph based on research on the theory of
E0-semigroups of the author and some others
during the last decade or so. As the au-
thor himself is a dominant leading figure
of the field, this book serves as a good in-
troduction to the currently very active field
of E0-semigroups. The book assumes basic
knowledge of the theory of operator algebras,
C∗-algebras, and von Neumann algebras and
the general theory of functional analysis. The
author cites the following books on operator
algebras as basic references: [Arv], [Dxm],
and [Pdsn].

This reviewer thinks that this is a timely
publication in an area that has advanced
rapidly in recent years, and it is becoming
increasingly difficult for a newcomer to join
the research front without the guidance of
an expert; at the same time the field has
shown a certain maturity, so that a mono-
graph evaluating the current status is highly
desirable. The book under review fulfills this
need. Nevertheless the reader is cautioned
that the book is not a neutral treatise of the
subject, but rather the research monograph of
an author summarizing his own research with
some new results and/or new approaches.

The theory of E-semigroups was first in-
troduced by Powers in articles in 1987 [Pws1]
and 1988 [Pws2], in conjunction with the
theory of unbounded densely defined closed
∗-derivation on an operator algebra which
was developed in the late 1970s and through-

out the 1980s. A densely defined closed ∗-
derivation does not necessarily generate a
one-parameter automorphism group of the
algebra in question unless the derivation satis-
fies a condition similar to the self-adjointness
condition for a closed symmetric operator. It
generates a one-parameter semigroup of ∗-
endomorphisms instead. So Powers thought
that there should be an analogy between the
theory of symmetric operators and the theory
of derivations and/or an analogy between the
theory of one-parameter semigroups of isome-
tries on a Hilbert space and the theory of one-
parameter semigroups of endomorphisms of a
von Neumann algebra. So he first introduced
the index of theE-semigroup analogous to the
deficiency index of a densely defined, closed
symmetric operator. At any rate, the the-
ory of the E-semigroup is far more complex
and deep than Powers originally expected.
Inspired by the above-mentioned papers by
Powers, a small number of specialists started
to work on the subject, including Arveson
(the author of the book under review), Pow-
ers, Price, and Robinson. They mostly con-
centrated on the theory of E0-semigroups on
a factor B(H) of type I, which is unexpect-
edly deep and complex. For instance, it al-
lows each specialist to take different moti-
vations and approaches to the subject. The
author of this book took the point of view
that anE0-semigroup represents a continuous
nonreversible noncommutative, or quantum,
stochastic process. In fact, such a point of
view brought about a radical development
of the subject in recent years. The field is
now rich enough that there are many ways
to attack the subject. Before making further
comment, let us take a closer look at the
book.

Arveson devotes Chapter 1 to intro-
ductory discussions of motivations of E0-
semigroups. Then he divides the book into
five parts:

Part 1. Index and Perturbation Theory,
Chapters 2–4;

Part 2. Classification: Type I Cases, Chap-
ters 5 and 6;

Part 3. Noncommutative Laplacians, Chap-
ters 7–10;

Part 4. Causality and Dynamics, Chapters
11–12;

Part 5. Type III Examples, Chapters 13–14.
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An E-semigroup is by definition a one-
parameter family {αt : t ≥ 0} of ∗-
endomorphisms of a von Neumann algebra
M:

(i) α0 = idM;

(ii) αs◦αt = αs+t, s, t ≥ 0;

(iii) for every a ∈ M and ρ ∈ M∗, the func-
tion: t ∈ R+ �→ ρ(αt(a)) ∈ C is contin-
uous.

If each αt is unital, i.e., if αt(1M) = 1M,
then it is called anE0-semigroup. The book is
almost exclusively concentrated on the the-
ory of E0-semigroups of a factor B(H) of
type I with the exception of the canonical
E-semigroup associated with a product sys-
tem E. A cocycle means a strongly contin-
uous family {Ut : t ≥ 0} ⊂ M such that
Us+t = Usαs(Ut), s, t ≥ 0. The cocycle per-
turbation α by a cocycle U = {Ut} means
the new E-semigroup Uα given by Uαt(A) =
Ad(Ut)αt(A), t > 0.TwoE-semigroups α and
β are called cocycle conjugate if α is conju-
gate to a cocycle perturbation of β. The
theory of E-semigroups is mainly concerned
with their cocycle conjugacy classification by
computable invariants.

One quickly observes that if α is a ∗-
endomorphism1 of the factor B(H) of all
bounded operators on a Hilbert space H,
then the set

E(α)={A∈B(H) : AT =α(A)T, T ∈B(H)}

carries an intrinsic Hilbert space structure
as the product T ∗S, S, T ∈ E(α), is a scalar
multiple of the identity operator 1H since it
commutes with every operator of B(H) as
seen below:

(T ∗S)A = T ∗α(A)S = (α(A∗)T )∗S

= (TA∗)∗S = A(T ∗S),

S, T ∈ E(α), A ∈ B(H).

Conversely, a Hilbert space E of ele-
ments of B(H) whose inner product is given
by T ∗S, T, S ∈ E, gives an endomorphism αE

determined by

αE(A) =
∑
i

SiAS
∗
i , A ∈ B(H),

with an orthonormal basis {Si} of E. Thus
one has the bijective correspondence

α = αE(α), E = E(αE).

The endomorphism αE is unital in the sense
that αE(1) = 1 if and only if the ranges of
members of E span the entire space H. This
is a fact discovered by mathematical physi-
cist John Roberts [Rbt]. One should note
here that every element of a Hilbert space E
in B(H) is a scalar multiple of an isometry;
in particular, every vector of norm 1 is indeed
an isometry. Also, the product of endomor-
phisms α and β corresponds to the product
E(α)E(β) Hilbert space, i.e., the closed lin-
ear span of products of vectors of E(α) and
E(β) that behaves precisely like the tensor
product as seen below:

STA = Sβ(A)T = α(β(A))ST,

S ∈ E(α), T ∈ E(β), A ∈ B(H);

(S2T2)∗(S1T1) = T ∗2 S
∗
2S1T1 = T ∗2 〈S1, S2〉1HT1

= 〈S2, S1〉T ∗1 T2 = 〈S1, S1〉〈T1, T2〉1H ,
S1, S2 ∈ E(α), T1, T2 ∈ E(β).

So Arveson replaces a given E0-
semigroup α = {at : t ≥ 0} of B(H) by
a one-parameter family Eα = {E(t) : t > 0}
of Hilbert spaces inB(H). He calls this a con-
crete product system. The product of two in-
tertwining Hilbert spaces E(s) and E(t) gives
E(s)E(t) = E(t)E(s) = E(s + t), s, t > 0.
This is the source of the terminology product
system and also quickly relates to the theory
of the continuous tensor product of Hilbert
spaces, which is still a mystery despite its
strong relevance to quantum field theory.
The product system Eα is easily seen to be a
complete cocycle conjugacy invariant. From
the beginning of the theory of E0-semigroups,
the existence of intertwining one-parameter
semigroups S = {S(t) : t ≥ 0} such that
S(t)A = αt(A)S(t), t ≥ 0, A ∈ B(H), was
a great concern. He calls such a semigroup
of isometries a unit and denotes the set of
units by U = Uα. In order to deal with this
problem, he gives an abstract characteriza-
tion of product systems by a natural set of
postulates and calls an abstract product sys-
tem E. He then associates the Hilbert space
L2(E) of square-integrable cross sections of
the abstract product system E and defines
the left and right regular representation of

1In what follows, when we refer to an endo-
morphism, we always mean a ∗-endomorphism.
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E and the spectral C∗-algebra C∗(E), which
behaves like the reduced group C∗-algebra of
a locally compact group, and proves that the
regular representation of C∗(E) is faithful,
a kind of amenability. Through the study
of C∗(E), he establishes that every abstract
product system is uniquely isomorphic to a
concrete product system Eα; i.e., it corre-
sponds to an E0-semigroup. In doing so, he
makes a detailed analysis of states on C∗(E)
which gives rise to an E0-semigroup by means
of local behavior of the product system near
the origin, a counterpart of the Powers ap-
proach based on derivations.

Arveson relates a unit to a decomposable
element of the product system and proves the
second C×-valued cohomology vanishing on
the additive semigroup R+ of nonnegative
reals using his operator algebraic technique.
Also, the product system approach allows him
to introduce an inner product on the space of
finitely supported complex-valued functions
with total sum 0 over the set Uα of units.
Then he proves that the dimension of the
Hilbert space obtained by the completion of
this “semi-inner” product space is precisely
the index of α defined by Powers and estab-
lishes the tensor product formula:

ind(α⊗ β) = ind(α) + ind(β)

forE0-semigroups α and β on the factorB(H)
of type I.

Given an E0-semigroup α, an operator
T ∈ Eα(t), t > 0, is said to be decompos-
able if for any 0 < s < t, there exists a pair
A ∈ Eα(s) and B ∈ Eα(t− s) with T = AB.
Let Dα(t) be the set of all decomposable op-
erators in Eα(t). The E0-semigroup α is said
to be decomposable if the closed span ofDα(t)
is Eα(t) for some t > 0, and equivalently for
every t > 0.

The class of E0-semigroups is divided
into three groups: those of type I, of type II,
and of type III, where an E0-semigroup α is
said to be of type I if it is decomposable; of
type II if it is not decomposable but for some
t0 > 0, Dα(t0) 	= {0}; and of type III if it has
no nonzero decomposable operators.

The cocycle conjugacy classification of
E0-semigroups of type I is completed by
means of an index, and their models are given
as CCR/CAR flows in Chapter 6.

This reviewer found interesting the part
dealing with the C∗-dilation of a one-

parameter semigroup of CP-contractions on a
C∗-algebra and a von Neumann algebra, i.e.,
Part 3. There have been a number of attempts
to develop a theory of dilations of a one-
parameter semigroup of CP-contractions on
a C∗-algebra into a one-parameter semigroup
of endomorphisms on a larger C∗-algebra, so
that the original semigroup is given as the
corner of the semigroup of endomorphisms.
Arveson has succeeded by constructing the
universal dilation and then restricting it to the
relevant representation of the system, restor-
ing the minimality and/or normality in the
case when the original system is a semigroup
of normal CP-contractions of a von Neumann
algebra. The construction does not appear to
work for von Neumann algebras; in particular,
the question about the normality does not ap-
pear to be easy, but it does work, surprisingly,
in the end. Since many second-order elliptic
differential operators give rise to semigroups
of CP-contractions on the C∗-algebra of func-
tions on the manifold in question, one could
expect some applications of Arveson’s dila-
tion theory to differential operators, which
remains to be seen at this point.

Part 4 can be summarized as Arveson’s
adaptation of scattering theory to the context
of E0-semigroups. In this part, he treats the
problem in which an E0-semigroup can be
viewed as a subsystem of a reversible system,
i.e., a corner of a one-parameter automor-
phism group.

Arveson concludes the monograph in
Part 4 with some very mysterious examples
of type III due to Powers and Tsirelson. This
area is deeply related to the study of stochas-
tic processes. The reviewer found the very
last part of the book, section 14.5, interest-
ing, where the author discusses the intrinsic
Hilbert space—exactly the intrinsic Hilbert
space L2(M) associated with a von Neumann
algebra M that was discussed in the reviewer’s
book [Tks, Exercises XII.6.6 and 6.7] as it
appears from different approaches and moti-
vations.

Finally, the reviewer is happy to recom-
mend this book.
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Let’s get one thing straight from the very
beginning. I like this two-volume set. It will
make an excellent reference for students and
provides a vast reservoir of interesting exer-
cises and exam questions for analysis teachers.
Get your library to order a copy as soon as
possible.

I am not so keen on it as a text for
an undergraduate course in real analysis. It
certainly has its good points. It offers a
panoramic view of analysis, beginning with
an axiomatic introduction to the real line,
followed by a complete development of all
the standard material on differentiation and
(Riemann) integration, both in one variable
and in several variables. It also contains chap-
ters on vector calculus, metric and topolog-
ical spaces, differentiable manifolds, normed

linear spaces, Banach spaces, distributions,
Fourier series and transforms, and asymp-
totic expansions. However, covering the en-
tire two-volume set would take my students
three to four years. Yes, it could serve as an
entire undergraduate curriculum in analysis,
but the engineers would never stand for all
that abstraction, and I doubt that many of my
first-year undergraduates could handle the so-
phistication of the opening chapters. There
is, of course, a huge difference between the av-
erage Russian undergraduate and the average
American undergraduate, and that difference
is amply demonstrated by this two-volume
set.

What special features, beside enormous
breadth, distinguish these volumes from other
introductory analysis texts? I shall answer
this question with seven declarative sentences
(in boldface below), followed by detailed ex-
amples from the work to back up my claims.

1. The Foundations Are Carefully Laid.
Volume I begins with material on rules and
notation of logic, including truth tables. The
writing is very dense. By Vol. I, p. 6, Rus-
sell’s paradox has been discussed and a proof
has been given that the “set of all sets” is
contradictory. The supplemental material at
the end of Chapter 1 (Vol. I, pp. 25–33) even
discusses the cardinality of sets and the ax-
ioms of set theory, including the Axiom of
Choice and the Axiom of Replacement.

Nothing is left to chance. For exam-
ple, when the order axioms are introduced
in Chapter 2, the transitive properties are
stated not only for ≤, but also for the var-
ious combinations of < and ≤; e.g., x < y,
y ≤ z imply x < z, and x ≤ y, y < z imply
x < z (Vol. I, p. 41). Another example: The
proof that a function is differentiable if and
only if it has a tangent line is followed by a
frank discussion (Vol. I, p. 184) which begins:
“the analytic definition of tangent may cause
vague uneasiness . . . ” and then lays bare all
of the difficulties that occur when making a
rigorous definition of limits of secant lines, in-
cluding what it means for points to converge
to points along curves.

The author wants to banish imprecision
and vagueness. Even the smallest points are
discussed. Thus we find a proof that n ∈ N
and n 	= 1 imply n− 1 ∈ N (Vol. I, p. 47), a
proof of the existence of

√
2 (Vol. I, p. 51),
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a complete description of positional notation
with respect to an arbitrary base, not just
base 10 (Vol. I, pp. 61–62), and a precise
definition of exponents starting with inte-
ger powers and ending with irrational powers
(Vol. I, pp. 118–121). He also uses the defi-
nition of logarithms to prove the usual laws
of logarithms (Vol. I, p. 118). This work is
complete and absolutely rigorous.

2. It Is Comprehensive and Encyclope-
dic. This is a text that the author expects
students to use later for reference. Thus each
subject is thoroughly covered before moving
on to the next. For example, the product rule
for differentiation is accompanied by Leibniz’s
rule for taking the nth derivative of a prod-
uct. Tests for extrema include not only the
standard second derivative test, but also the
nth derivative test as well. Both versions of
the change-of-variable formula on an interval
are included, the one for C∞ changes ϕ as
well as the one for strictly monotone ϕ. The
material on improper integrals includes the
Cauchy principle value version as well as the
usual “asymmetric” definition. There is even
a discussion of Lusin’s conjecture (Fourier se-
ries of continuous functions converge almost
everywhere) and a reference to Carleson’s
magnificent solution to it.

Standard results are sometimes recast to
milk every last bit of information from them.
For example, to prove that a 1–1 continuous
function has a continuous inverse, the author
begins with: A continuous function on [a, b]
is 1–1 if and only if f is strictly monotone on
[a, b]. His version of the Intermediate Value
Theorem is: A monotonic real-valued func-
tion f on [a, b] is continuous if and only if
f([a, b]) is a closed interval with end points
f(a) and f(b).

The treatment of topics is quite gen-
eral. The discussion of uniform convergence
includes not only sequences, but also param-
eter families, e.g., families indexed by a con-
tinuum. Fubini’s theorem is proved not only
for Riemann integrals, but also for improper
integrals.

The author also includes some results
that are usually reserved for a later course
in Lebesgue integration, e.g., the inequalities
of Young, Hölder, Minkowski, and Jensen.
These are cleverly introduced first for fi-
nite sums (Vol. I, p. 248), with the integral

versions left as exercises (Vol. I, pp. 358–
359). Other “advanced topics” covered in-
clude elliptic integrals, complex infinite se-
ries, normed linear spaces, Banach spaces,
and proofs of the Lebesgue criterion for Rie-
mann integrability, the Baire category theo-
rem, an existence theorem for the first-order
initial value problem, the Ascoli–Arzelà the-
orem, and the Stone–Weierstrass theorem.
The discussion of trigonometric series even
includes a couple of results on uniqueness.
The author also defines the Fréchet derivative
(i.e., differentiation of functions with normed
linear space domains), develops enough calcu-
lus of variations to solve the brachistochrome
problem, and gives a physical interpretation
of the n-dimensional curl via potential fields.
He also includes material usually reserved for
algebra courses, e.g., a discussion of the ex-
ponential of an operator with applications to
matrices, and a description of homology and
cohomology groups culminating with a proof
of De Rham’s theorem.

3. Material Is Carefully Motivated by
Practical Considerations. You can tell that
the department at Moscow State University is
called the department of “Mathematics and
Mechanics.” The author derives Snell’s law
from Fermat’s principle about minimal paths
and includes discussions of barometric pres-
sure, of motion of bodies with variable mass
(e.g., rockets), of falling bodies in atmosphere,
of pendulums, and of Buffon’s needle prob-
lem.

One expects the derivative to be moti-
vated by velocity and surface integrals to be
motivated by work in a force field or flux of
a liquid. But here we also find limits moti-
vated by measurement of physical quantities
(Vol. I, p. 79) and differentials motivated by
the two-body problem (Vol. I, p. 173).

Even very abstract concepts are moti-
vated by real-world problems, e.g., metric
spaces by coding theory, distributions by a
point mass attached to the end of an elastic
spring, and differentiation of linear opera-
tors by angular velocity of a rigid body with
a fixed point (e.g., a top). No student can
come away without a profound appreciation
for the applicability of analysis.

4. Important Ideas Are Introduced
More Than Once. Early versions of a defini-
tion tend to be more concrete and less formal.
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Later iterations of the same concept tend to
be more abstract and, ultimately, very gen-
eral. For example, a function is first defined as
a “correspondence” that is single-valued (Vol.
I, p. 11), and later defined as a relation which
satisfies “(xRy1) ∧ (xRy2) =⇒ (y1 = y2)”
(Vol. I, p. 21). The derivative is first defined
for functions with real domains, then vector
domains, and finally with normed linear space
domains.

Major results are sometimes introduced
informally first, and the theory is developed
later. I found this especially effective for Tay-
lor series. These are first introduced in a
table that is used to obtain results such as
(x−sinx)/x3 → 1/3! as x→ 0. Later, Taylor
series are developed rigorously. By the time
proofs about convergence of power series are
presented, the student is already aware of how
important Taylor series are, and ready, if not
eager, to find out what limitations these won-
derful tools have. The author is obviously an
excellent teacher as well as a fully competent
mathematician.

5. The Pace Accelerates as the Text
Progresses. Concepts which appear more
than once appear with increasingly greater
abstraction and with increasingly less de-
tail. For example, limits of functions are first
treated thoroughly in great detail in the one-
dimensional case, next (with less detail) in
Rn, then in metric spaces, and finally in
topological spaces.

By presenting complete details in the
more concrete cases, much of the theory for
the more abstract cases is left as exercises.
For example, the inverse function theorem is
proved for the one-dimensional case and left
as an exercise for the normed linear space-
valued case (Vol. II, p. 105).

By the second volume, after his students
have grown more sophisticated, the author
begins to state without proof results which
are either easy or tedious to verify. For exam-
ple, he lets the reader verify that ∂(E1 ∪E2),
∂(E1 ∩ E2), and ∂(E1 \ E2) are subsets of
∂E1 ∪ ∂E2 (Vol. II, p. 117), and that the def-
inition of boundary point is independent of
the choice of a local chart (Vol. II, p. 178).

Still, when a really tough result comes
up, one whose proof has not been covered
in a previous discussion, the author slows
down and gives his usual careful, thorough

presentation. Nowhere is this care more ev-
ident than in the section on change of vari-
ables in Rn (Vol. II, section 11.5). He begins
with a heuristic argument that explains why
detφ′ appears in the change-of-variables for-
mula and why it should be nonzero, then
breaks the proof into half a dozen steps, the
first of which is that sets of measure zero
are preserved by diffeomorphisms. When he
starts looking at concrete cases (e.g., polar
coordinates) he is careful to note that the
hypotheses about the determinant of φ′ not
being zero do not hold, but shows how one
can get around this difficulty by opening up
the boundary. Not many texts even men-
tion these difficulties. Indeed, one usually ap-
plies the change-of-variables formula to polar,
cylindrical, and spherical coordinates without
even considering whether the hypotheses hold
or not.

6. This Two-Volume Set Contains
Plenty of Good Examples. One place this
work really shines is in its examples. Every
definition is followed by nearly a dozen ex-
amples, some of them non-standard. These
examples are often carefully laid out so that
there is a gradual revelation of the nuances
of the concept being illustrated. For exam-
ple, the fourth example of a topological space
is the set of germs of continuous functions
(Vol. II, p. 11). Moreover, a significant por-
tion of these examples are designed to demon-
strate to the student that these ideas are
useful; e.g., the third example of a function
(Vol. I, p. 13) is the Galilean transition from
one inertial coordinate system (x, t) to an-
other (x′, t′) given by x′ = x− vt, t′ = t.

7. It Also Contains Plenty of Exercises.
Nearly every section is followed by a massive
set of exercises. Early exercises in a typical
section tend to be standard and routine. This
essential type of exercise is designed to “make
friends with the concepts.” Later exercises in
a given section take more creativity and skill
to solve.

Many exercises deal with applied mathe-
matics. These range from modeling grinding
lathes (Vol. I, p. 478) to the Heisenberg un-
certainty principle (Vol. II, pp. 590–591).

Other exercises are devoted to extending
the theory. This, of course, is a good idea.
It gives the students a chance to master the
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material at a deeper level and keeps the text
from being overburdened with too many de-
tails. The level of these exercises can be rather
high for a beginning student; e.g., prove that
f(A∩B) = f(A)∩f(B) if and only if f is 1–1
(Vol. I, p. 23), construct the Hausdorff metric
on closed subsets of a metric space (Vol. II,
p. 9), verify the one-point compactification of
a topological space (Vol. II, p. 18), or prove
that there exist C∞ partitions of unity (Vol. II,
p. 148). Perhaps some of these exercises are
designed to be given as projects. There is no
doubt that students trained by such exercises
are ready to do some serious work by the time
they enter graduate school. The range of sub-
ject matter in these “projects” is impressive.
They include Chebyshev polynomials, Lie
algebras, Bessel functions, the Gamma func-
tion, Tauberian theorems, Legendre polyno-
mials, Hermite polynomials, Haar polynomi-
als, spherical harmonics, and Sturm–Liouville
theory.

This two-volume set also contains a num-
ber of “thinking exercises,” i.e., exercises
which require several steps to solve. Although
these exercises are a little too deep for the
solution to be obvious, they are often easier
to solve than they seem at first. All a student
needs to do is look carefully at what is being
asked, and then be willing to try the three
or four tools that apply to the situation at
hand. Here are some of my favorites.

(a) Find (in the context of Riemann sums)
the limit, as n→∞, of

n

(n+ 1)2 + · · ·+ n

(2n)2 .

(b) Prove that the algebraic numbers a +
b
√
n satisfy the Archimedean principle

but not the completeness axiom.

(c) If bn/bn+1 = 1 + βn and if
∑

βn con-
verges absolutely, prove that bn con-
verges to some finite real number, as
n→∞.

(d) Find the infimum of

∫ b

a

f(x) dx
∫ b

a

f−1(x) dx

as f ranges over all real-valued, contin-
uous functions that do not vanish on a
closed interval [a, b].

(e) If f is integrable, prove that∫ x

0

∫ x1

0

· · ·
∫ xn−1

0

f(xn) dxn · · · dx2

=
1
n!

∫ x

0

(x− y)nf(y) dy.

(f) If f is continuous, prove that

lim
h→0

∫ 1

−1

h

h2 + x2 f(x) dx = f(0).

8. Unusual Touches. It is clear that al-
though this text is very much in the Cauchy–
Weierstrass tradition, the author has gone
to the trouble of thinking out the curricu-
lum with an eye toward simplification. This
results in some unusual presentations. Exam-
ples follow.

One of the order axioms is that x ≤ y,
y ≤ x imply x = y. The trichotomy property
is proved, not introduced as an axiom.

Zorich’s version of the completeness ax-
iom is that for each pair of real numbers
x ≤ y, there is a real number c such that
x ≤ c ≤ y.

He uses Bernoulli’s inequality to prove
that (1+1/n)n has a limit, as n→∞ (Vol. I,
p. 89), by definition the natural base e, and
derives from it the usual series representation
of e (Vol. I, p. 103).

Zorich shows that if ak is decreasing and
nonnegative, then

∑
ak converges if and only

if
∑

2ka2k converges, and uses this result to
prove the p-series test (Vol. I, p. 101).

He uses frames (essentially local coor-
dinate systems) to define orientation of a
surface.

He introduces the exterior product ax-
iomatically, then shows that an arbitrary
differential k-form is a “linear” combina-
tion of elementary k-forms, i.e., a finite sum
of products of functions and basis elements
dxi1 ∧ · · · ∧ dxik .

9. Other Features. The text is further
enhanced by the historic notes that are sprin-
kled throughout. These add both a human
and an international dimension to the text. I
was especially intrigued by an implied rank-
ing that the descriptions of individual math-
ematicians indicated; e.g., Johann Bernoulli
is “from the distinguished family of Swiss
mathematicians,” Riemann is “the outstand-
ing German mathematician,” Lobachevskii is
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“a great Russian scholar,” Kantorovich is “an
eminent Soviet mathematician,” but Darboux
is only “a French mathematician.”

10. What’s NOT to Like?. I found the
excessive use of logical notation to be severe
in spots. For example, the proof of DeMor-
gan’s law (Vol. I, p. 9) contains practically no
words at all, just symbols. This is easy for a
trained mathematician to read, but I wonder
what a beginning student would make of it.
Even some definitions are given in this style;
e.g., the “definition” of the image of a set X
under a function f (Vol. I, p. 12) is stated as

f(X) := {y ∈ Y
∣∣ ∃x ((x ∈ X)∧(y = f(x)))},

and that of infimum (Vol. I, p. 45) as

i = inf X := ∀x
∈ X((i ≤ x) ∧ (∀i′ > i ∃x′ ∈ X(x′ < i′))).

Granted, this happens only occasionally after
the first chapter, so it’s easy to ignore. More-
over, this habit practically disappears by the
middle of Volume II.

I also found the differences between
Russian and American nomenclature annoy-
ing after a while. We find Borel–Lebesgue
for Heine–Borel, Schwarz–Bunyakovsky for
Cauchy–Schwarz, generalized functions for
distributions, fundamental sequence for
Cauchy sequence, the Lagrange finite-
increment theorem for the mean value theo-
rem (at least “Cauchy’s finite-increment the-
orem” is called the generalized mean value
theorem in a footnote), the Gauss–
Ostrogradskii theorem for the divergence
theorem, and rapidly decreasing functions
for Schwartz functions. Before you hand this
two-volume set to one of your students,
you might consider explaining that standard
American usage is different, and provide a
dictionary so that the student can learn our
terminology (hence, be able to communicate
with the rest of us).

11. Misprints. I read nearly every page
of both volumes and found very few misprints.

1. Exercise 3a in Vol. I (p. 11) asks for a
proof of the same version of DeMorgan’s
law which was proved in the text on p. 9.

2. The M is missing from the Weierstrass
M-Test (Vol. I, p. 99).

3. The set {x ∈ X : d(a, x) ≥ r} is suppos-
edly open (Vol. II, p. 5).

4. The function χE1∩E2 should be multi-
plied by f (Vol. II, p. 123, line 11).

5. The symbol
∫

limitsY dy should be∫
Y
dy (Vol. II, p. 127, line −3).

6. “Orhogan” (Vol. II, p. 522) should be
“orthogonal.”

WILLIAM R. WADE

University of Tennessee

Solving Nonlinear Equations with Newton’s
Method. By C. T. Kelley. SIAM, Philadelphia, 2003.
$39.00. xiv+104 pp., softcover. ISBN 0-89871-
546-6.

This excellent short book is a practical guide
to the solution of nonlinear equations by New-
ton’s method, where “Newton’s method” is to
be understood in a rather broad sense. The
subject matter is a class of iterative meth-
ods that solve a system of linear equations
at each iteration to determine a correction.
For safety, a simple line search is used to de-
termine whether or not to take a “full” step.
At each iteration the norm of the residual
should be reduced. The matrix in the linear
system to be solved is the Jacobian or an ap-
proximation to the Jacobian, and the system
may be solved “exactly” by a direct method
or approximately by an iterative method.

The book has four chapters. The first
is an introduction and overview. Chapter 2
discusses direct methods (Gaussian elimina-
tion) for solving the linear equations exactly.
In this situation there is pressure to avoid fre-
quent updates of the Jacobian, since each up-
date requires a new LU factorization. When
an update is made, the Jacobian can be com-
puted exactly or approximately. Chapter 3
covers iterative (Krylov subspace) methods
for solving the linear systems. Here we have
iterations within iterations; that is, we have
“inner” and “outer” iterations. On each outer
iteration we hope to obtain a sufficiently good
approximation in only a few inner iterations,
so preconditioners play a big role. The final
chapter discusses Broyden’s method, which
builds increasingly good approximations to
the Jacobian by making a rank-one update
at each (outer) iteration. Here, too, precon-
ditioners are important. The objective is to
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precondition the nonlinear system in such a
way that the identity matrix is a good initial
approximation to the Jacobian.

Each chapter includes a brief discussion
of theory and practice, advice about which
methods can be expected to work well in
which situations, and a list of things that
can go wrong. Each of the methods is il-
lustrated by a variety of examples coded in
MATLAB. The largest examples are from
discretizations of nonlinear partial differen-
tial equations, both steady state and time
dependent. All of the MATLAB codes can
be downloaded from the SIAM web site
(http://www.siam.org/books/fa01/) so read-
ers can try them out, play with them, modify
them, and use them as templates for solving
their own problems.

In the preface the author states that he
assumes the reader has a good understanding
of numerical analysis at the level of Atkin-
son’s An Introduction to Numerical Analysis
and of numerical linear algebra at the level
of Demmel or Trefethen and Bau. Although
these prerequisites are technically correct, I
hope that students will not be intimidated by
them. Whether they have the prerequisites
or not, I would encourage them to dive right
in and learn something.

This book promises to be a useful sup-
plement to a variety of numerical analysis
courses and a helpful guide for practitioners
who need to solve nonlinear systems in their
research.

DAVID S. WATKINS

Washington State University


