
Adaptive Higher-Order Finite Element Methods

for Transient PDE Problems Based on Embedded

Higher-Order Implicit Runge-Kutta Methods

Pavel Solina,b, Lukas Korousc

aDepartment of Mathematics and Statistics, University of Nevada, Reno, USA
bInstitute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague

cCharles University, Prague, Czech Republic

Abstract

We present a new class of adaptivity algorithms for time-dependent partial
differential equations (PDE) that combines adaptive higher-order finite ele-
ments (hp-FEM) in space with arbitrary (embedded, higher-order, implicit)
Runge-Kutta methods in time. Weak formulation is only created for the
stationary residual of the equation, and the Runge-Kutta method is supplied
via its Butcher’s table. Around 30 Butcher’s tables for various Runge-Kutta
methods with numerically verified orders of local and global truncation errors
are provided. New time-dependent benchmark problem with known exact
solution that contains a moving front of arbitrary steepness is introduced,
and used to compare the quality of seven embedded implicit higher-order
Runge-Kutta methods. Numerical experiments also include a comparison of
adaptive low-order FEM and hp-FEM with dynamically changing meshes.
All numerical results presented in this paper are easily reproducible in the
FEMhub Online Lab (http://femhub.org) and using the Hermes open source
library (http://hpfem.org/hermes).

Keywords: Runge-Kutta method, Butcher’s table, Finite element method,
Automatic adaptivity, Dynamically changing meshes, Reproducible research

Email addresses: solin@unr.edu (Pavel Solin), lukas.korous@gmail.com (Lukas
Korous)

Preprint submitted to J. Comput. Appl. Math. July 26, 2011



1. Introduction

In recent years, adaptive higher-order spatial discretizations including
spectral elements (SEM), higher-order finite elements (hp-FEM), and higher-
order Discontinuous Galerkin (hp-DG) methods have become very popular
in computational engineering and science. See, e.g., [6, 10, 12, 14, 17, 22, 23]
and the references therein (this list is largely incomplete).

The next task of great practical importance is to combine these techniques
with adaptive implicit higher-order time integration methods to design robust
higher-order methods for transient problems that are adaptive both in space
and in time. To our best knowledge, this has not been done yet.

When spatially-adaptive algorithms are extended to transient problems,
it is customary to speak about adaptivity with dynamic or dynamically-
changing meshes. Mostly this is done with low-order methods both in space
and in time [1, 2, 9, 15, 16, 18, 19, 24]. Sometimes these methods are wrongly
referred to as ”Space-Time Finite Element Discretizations”, which creates
an impression that a d+ 1 dimensional space-time continuum is meshed and
discretized using d+ 1 dimensional finite elements.

Higher-order spatial discretizations with dynamically-changing meshes
are far less frequent in the context of transient problems, and to our best
knowledge they have been only combined with non-adaptive time discretiza-
tions or with adaptive lower-order implicit time stepping methods such as in
[7, 21].

1.1. Need for Implicit Higher-Order Methods

Explicit time stepping is not practical in conjunction with spatial adap-
tivity. This can be seen on parabolic problems where for stability reasons
the time step size ∆t is limited by the square of the size of the smallest mesh
element O(∆h2). This is a serious constraint even without spatial adaptiv-
ity. When ∆h is further reduced by mesh refinements, the time step easily
becomes prohibitively small. CFL-like conditions for hyperbolic problems
usually limit the time step by O(∆h) instead of O(∆h2) but the outcome is
similar.

We are particularly interested in embedded implicit higher-order Runge-
Kutta methods that provide at the end of each time step a pair of approxi-
mations with different orders of accuracy. The difference between these two
approximations can be used as an a-posteriori error estimator. With such
error estimator in hand, it is possible to design trivial algorithms for adaptive

2



time step control. These algorithms will not be discussed in this paper, but
we will look at the quality of the error estimate provided by several embedded
implicit higher-order Runge-Kutta methods.

1.2. Outline

The outline of the paper is as follows: Section 2 provides a brief review
of Runge-Kutta methods and Butcher’s tables for future reference. Sec-
tion 3 explains how the spatial discretization of a transient problem can
be combined with an arbitrary Runge-Kutta method. Section 4 presents a
database of around 30 Butcher’s tables with verified local and global trunca-
tion errors. Section 5 introduces a time-dependent benchmark problem with
known exact solution that contains a moving front of arbitrary steepness.
This benchmark is used to compare the quality of seven embedded implicit
higher-order Runge-Kutta methods in Section 6. In Section 7 we describe an
adaptive algorithm for time-dependent problems with dynamically-changing
meshes that works with any Runge-Kutta method. The algorithm is illus-
trated numerically in the same section. Finally, conclusions and outlook are
formulated in Section 8.

2. Brief Review of Runge-Kutta Methods

For an ordinary differential equation

dy

dt
= f(t, y), (1)

an s-stage Runge-Kutta method has the form

yn+1 = yn + ∆t
s∑

j=1

bjkj (2)

where

ki = f

tn + ∆tci, yn + ∆t
s∑

j=1

aijkj

 . (3)

Here tn is the last time level, ∆t the time step, and aij, bi and ci are known
constants. The unknowns ki are called stage derivatives and their calcula-
tion is the most demanding part of the computation. With known stage
derivatives, the new time level approximation yn+1 in (2) is evaluated easily.

3



2.1. Butcher’s Tables

The constants aij, bi and ci in (2), (3) can be written in the form of a
table [4],

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

...
cs as1 as2 . . . ass

b1 b2 . . . bs

Table 1: Butcher’s table of a general Runge-Kutta method.

The Runge-Kutta method is explicit if aij = 0 whenever j ≥ i, diagonally
implicit if aij = 0 whenever j > i, and fully implicit otherwise. For the
moment we will not distinguish between these cases and assume an arbitrary
s × s matrix A. However, the final computer code needs to distinguish
between them for efficiency reasons.

2.2. Embedded Runge-Kutta Methods

A distinct place among Runge-Kutta methods belongs to embedded meth-
ods. These methods can be written using a Butcher’s table that has two
B-rows,

c1 a11 a12 . . . a1s
c2 a21 a22 . . . a2s
...

...
...

...
cs as1 as2 . . . ass

b1 b2 . . . bs
b∗1 b∗2 . . . b∗s

.

Table 2: Butcher’s table of an embedded Runge-Kutta method.

The second B-row is used in conjunction with (2) to calculate an extra ap-
proximation

y∗n+1 = yn + ∆t
s∑

j=1

b∗jkj (4)

4



whose order of accuracy is less than the order of accuracy of the original
approximation yn+1. Note that the extra approximation y∗n+1 is very cheap
since the stages k1, k2, . . . , ks calculated in (3) are reused without change.

The difference between these two approximations can be used as an a-
posteriori error estimator,

en+1 ≈ yn+1 − y∗n+1.

2.3. Butcher’s Tables for Other Than Runge-Kutta Methods

Let us remark that the Butcher’s syntax is not limited to traditional
Runge-Kutta methods. For example, the widely used implicit Crank-Nicolson
method has the Butcher’s table

1 1/2 1/2
0 0 0

1/2 1/2
.

2.4. Resources for Runge-Kutta Methods

There is a vast amount of resources on Runge-Kutta methods and Butcher’s
tables. Many tables and references can be found in the original Butcher’s
book [4]. The Wikipedia page on Runge-Kutta methods [25] contains many
useful Butcher’s tables and references as well.

3. Application to PDE Problems

Let us consider a general (nonlinear, time-dependent) partial differential
equation

∂u

∂t
= f(x1, . . . , xd, t, u,∇u)

that after the semi-discretization is space takes the form

M
dY

dt
= F (t, Y ). (5)

Here M is the mass matrix, F a (nonlinear) vector-valued function with
N components, and Y = Y (t) an N -vector of time-dependent unknown so-
lution coefficients. Without time-dependent equation data equation (5) is
autonomous, F = F (Y ). Explicit dependence of F on t may come, for ex-
ample, from time-dependent equation coefficients, time-dependent boundary

5



conditions, time-dependent forcing term (such as, e.g., heat sources or electric
change density), or time-dependent geometry.

For the application of the Runge-Kutta method (2), (3) we write (5)
formally as

dY

dt
= M−1F (t, Y ), (6)

although the mass matrix is never inverted in practise.
In the light of (6), equations (2) and (3) become

Yn+1 = Yn + ∆t
s∑

j=1

bjKj (7)

and

MKi = F

tn + ∆tci, Yn + ∆t
s∑

j=1

aijKj

 . (8)

3.1. Newton’s Method

Any standard method can be used to solve the nonlinear algebraic sys-
tem (8). We will use the Newton’s method as the nonlinearity F usually is
differentiable. Equation (8) is rewritten as


M 0 . . . 0
0 M . . . 0
...

...
...

0 0 . . . M



K1

K2
...
Ks

−

F
(
tn + ∆tc1, Yn + ∆t

∑s
j=1 a1jKj

)
F
(
tn + ∆tc2, Yn + ∆t

∑s
j=1 a2jKj

)
...

F
(
tn + ∆tcs, Yn + ∆t

∑s
j=1 asjKj

)

 =



0
0
0
...
0

 .
(9)

The Ns×Ns Jacobian matrix of the left-hand side has the form

J = {Jij}si,j=1

where each Jij is an N ×N matrix of the form

Jij = δijM − aijhJ(tn + ∆tci, Yn + ∆t
s∑

j=1

aijKj).

Here J stands for the Jacobian matrix DF (t, Y )/DY , and δij is the Kronecker
delta.

6



3.2. Efficiency

Clearly, in the finite element method all the nonzero matrices Jij have the
same sparsity structure that, moreover, is identical to the sparsity structure
of M . Furthermore, for every i the matrix J(tn + ∆tci, Yn + ∆t

∑s
j=1 aijKj)

is the same in all Jij, 1 ≤ j ≤ s. If equation (8) is autonomous, then Jij is
the same for all 1 ≤ i, j ≤ s.

If the time-integration is explicit then the solution of system (8) is re-
duced to the solution of s linear algebraic systems with the mass matrix M
on the left-hand side. If the time-integration method is diagonally-implicit
(DIRK), then the solution of system (8) is reduced to the solution of s non-
linear systems with a N × N Jacobian matrix. The full Ns × Ns Jacobian
matrix should be used only with fully implicit methods whose Butcher’s table
contains nonzero elements above the diagonal.

4. Database of Verified Butcher’s Tables

After an extensive literature and Internet search we collected around 30
Butcher’s tables. Since some tables were incomplete (pending various ”simple
calculations”) and some contained typos, we implemented and tested all of
them in the FEMhub Online Laboratory [8]. Moreover, for each table we
verified numerically the order of local and global truncation errors. This
was done for both the lower and higher-order variants in embedded methods.
The tables and verification scripts in Python can be found in the published
worksheet ”Arbitrary RK Method” in the FEMhub Online Lab. To access
it, click on the ”Published Worksheets” button on the login screen.

For illustration let us show two graphs that are part of the published
worksheet ”Arbitrary RK Method” in the FEMhub Online Lab. They cor-
respond to a 5-stage embedded SDIRK method by Cash [5] of orders 2 and
4, and show that indeed the orders of the global truncation error are 2 and
4, respectively. Note that in the log-log plot, the order of the method is
revealed by the slope of the convergence curve.

7



Figure 1: Log-log plot of the global truncation error for the second-order variant of the
embedded implicit SDIRK method by Cash [5].

Figure 2: Log-log plot of the global truncation error for the fourth-order variant of the
embedded implicit SDIRK method by Cash [5].

8



5. Time-Dependent Benchmark Problem With Known Exact
Solution That Contains a Moving Front

To enable comparison of adaptive time-integration methods, we propose
a simple model problem

∂u

∂t
−∆u = f (10)

in a square domain Ω = (x0, x1)× (y0, y1) and time interval (0, t1). Equation
(10) is equipped with homogeneous Dirichlet boundary conditions, zero initial
condition, and the right-hand side f corresponds to an exact solution

u(x, y, t) = B(x, y)arctan(t)
(
π

2
− arctan(S(R(x, y)− t))

)
where R(x, y) =

√
x2 + y2 is the radius and

B(x, y) =
(x− x0)(x− x1)(y − y0)(y − y1)

C

is a bubble function that enforces the Dirichlet boundary conditions.
The solution contains a moving front whose steepness can be influenced

via the parameter S. The constant C serves for scaling purposes only. Fig.
3 shows the solution u for the values x0 = 0, x1 = 10, y0 = −5, y1 = 5,
C = 1000 and t = 5. The steepness of the moving front is S = 2 (left)
and S = 20 (right). As time approaches t1, the adaptivity algoritm should
coarsen the mesh so that no trace of a moving front is left.

Figure 3: Exact solution u for S = 2 (left) and S = 20 (right) at t = 5.

9



6. Comparison of Selected Embedded Implicit Higher-Order
Runge-Kutta Methods

Since we are going to compare temporal errors, we choose a small value
of steepness S = 2. The mesh contains 16 × 16 fourth-order elements and
3969 degrees of freedom (DOF), and it virtually eliminates the spatial error.
The values of the remaining parameters are left as before, and time step is
chosen to be ∆t = 0.1. We begin with the embedded method by Cash [5] of
orders 2 and 3. The corresponding error estimate and exact error for t = 5
are shown in the left and right parts of Fig. 4. Magnitudes of temporal error
estimate and exact error in H1-norm are shown in Fig. 5.

Figure 4: Error estimate (left) and exact error (right) for the embedded method by Cash
[5] (orders 2 and 3) at t = 5.

Figure 5: Magnitudes of temporal error estimate and exact error as functions of time.

10



Next we consider the embedded method by Billington [3] of orders 2 and
3. This method fails. The corresponding error estimate and exact error for
t = 5 are shown in the left and right parts of Fig. 6. Magnitudes of temporal
error estimate and exact error are shown in Fig. 7.

Figure 6: Error estimate (left) and exact error (right) for the embedded method by Billing-
ton [3] (orders 2 and 3) at t = 5.

Figure 7: Magnitudes of temporal error estimate and exact error as functions of time.

Next let us look at the TR-BDF2 method [11] of orders 2 and 3. The
corresponding error estimate and exact error for t = 5 are shown in the left
and right parts of Fig. 8. Magnitudes of temporal error estimate and exact
error are shown in Fig. 9.

11



Figure 8: Error estimate (left) and exact error (right) for the embedded method TR-BDF2
[11] (orders 2 and 3) at t = 5.

Figure 9: Magnitudes of temporal error estimate and exact error as functions of time.

The next method that we test is TR-X2 [11]. The corresponding error
estimate and exact error for t = 5 are shown in the left and right parts of
Fig. 10. Magnitudes of temporal error estimate and exact error are shown
in Fig. 11.

12



Figure 10: Error estimate (left) and exact error (right) for the embedded method TR-X2
[11] (orders 2 and 3) at t = 5.

Figure 11: Magnitudes of temporal error estimate and exact error as functions of time.

Next on our list is the embedded method by Cash [5] of orders 2 and 4.
The corresponding error estimate and exact error for t = 5 are shown in the
left and right parts of Fig. 12. Magnitudes of temporal error estimate and
exact error are shown in Fig. 13.

13



Figure 12: Error estimate (left) and exact error (right) for the embedded method by Cash
[5] (orders 2 and 4) at t = 5.

Figure 13: Magnitudes of temporal error estimate and exact error as functions of time.

Next we look at the embedded method by Cash [5] of orders 3 and 4. The
corresponding error estimate and exact error for t = 5 are shown in the left
and right parts of Fig. 14. Magnitudes of temporal error estimate and exact
error are shown in Fig. 15.

14



Figure 14: Error estimate (left) and exact error (right) for the embedded method by Cash
[5] (orders 3 and 4) at t = 5.

Figure 15: Magnitudes of temporal error estimate and exact error as functions of time.

The last method on our list is the embedded method by Ismail [13] of
orders 4 and 5. The corresponding error estimate and exact error for t = 5
are shown in the left and right parts of Fig. 16. Magnitudes of temporal
error estimate and exact error are shown in Fig. 17.

15



Figure 16: Error estimate (left) and exact error (right) for the embedded method by Ismail
[13] (orders 4 and 5) at t = 5.

Figure 17: Magnitudes of temporal error estimate and exact error as functions of time.

6.1. Discussion of Results

The reader can see that (with the exception of the Billington’s method) all
methods were capable of identifying correctly the spatial distribution of the
temporal approximation error. The magnitude of the temporal error was best
estimated by the Cash 23, Cash 24 and Cash 34 methods. Remarkably good
results were obtained by the Cash 34 method. The magnitude of the temporal
error was significantly underestimated by the TR-BDF2, TR-X2 and Ismail
methods. In particular the last is a disappointment since it uses seven stages,
and thus it takes lots of CPU time compared to all other methods.

16



7. Spatial Adaptivity with Dynamically-Changing Meshes
and Arbitrary Runge-Kutta Methods in Time

Given the limited length of the paper, we have to refer to [7, 20, 21]
for basic ideas of multimesh assembling. In particular [7, 21] describe how
the multimesh assembling is used to construct adaptive hp-FEM with dy-
namically changing meshes for transient PDE problems. However, papers
[7, 21] are based on the Rothe’s method where the temporal discretization
is incorporated into the weak formulation. Thus the implementation of each
new time stepping method means a new weak formulation and new com-
puter code. In order to circumvent this problem, the present study employs
the Method of lines which is more flexible in working with time stepping
methods.

Let us assume that we just finished nth time step and have a locally
refined mesh τn that was obtained using automatic hp-adaptivity, and an
approximation un on it. The adaptivity algorithm for the next time step is
as follows:

Step 1 (Global mesh derefinement):
Each time step with the exception of the first one begins with a global mesh
derefinement. This step is implementation-dependent, and thus let us present
three options that are available in the Hermes library:

• Reset the mesh τn to a very coarse base mesh τbase. Reset the polyno-
mial degrees of all elements to the initial polynomial degree pinit.

• Remove m refinement layers uniformly from all elements in the mesh
τn. Here m is usually one, two or at most three. Reset the polynomial
degrees of all elements to the initial polynomial degree pinit.

• Remove just one refinement layer uniformly from all elements in the
mesh τn. Decrease the polynomial degrees of all mesh elements by one.

The first option is mathematically cleanest, meaning that the mesh obtained
on the new time level is completely independent from the mesh that was gen-
erated during the last time step. The last option is fastest, but the sequence
of dynamical meshes generated in this way may have on average more DOF
than needed. The second option is a compromise. The coarsened mesh is
denoted by τn+1

r where r = 0 is the counter of adaptivity steps. This is the
initial mesh for the adaptive procedure that will lead to the next time level

17



approximation un+1.

Step 2 (Construction of a solution pair):

The mesh τn+1
r is refined globally in both h and p [22] and the resulting mesh

is denoted by τn+1
r, ref . Problem (8) is solved on the mesh τn+1

r, ref for the stage

vectors Kn+1
r, 1 , K

n+1
r, 2 , . . . , K

n+1
r, s . The stage vectors are combined linearly with

the basis functions on the mesh τn+1
r, ref to obtain their equivalents in the finite

element space on the mesh τn+1
r, ref . These continuous, piecewise polynomial

functions are denoted by un+1
r, K1

, un+1
r, K2

, . . . , un+1
r, Ks

. We add up these functions,
weighted with the coefficients b1, b2, . . . , bs and the time step, to obtain

un+1
r, K = ∆t

s∑
j=1

bju
n+1
r, Kj

.

Next, the function
un+1
r, ref = un + un+1

r, K

is projected to the mesh τn+1
0 to extract its lower-order part. Since the ap-

proximations un and un+1
r, K are defined on different meshes which, however,

have a common coarse master mesh, the multimesh assembling technique
[21] is employed. This is essential, since the multimesh technique ensures
no loss of information during the projection. The result of the projection is
denoted by un+1

r . Hence we have two approximations with different orders of
accuracy, un+1

r and un+1
r, ref .

Step 3 (Mesh adaptation):

With the solution pair un+1
r and un+1

r, ref in hand, we perform one step of hp-
adaptivity on the mesh τn+1

r [22]. The result of the mesh adaptation step is
denoted by τn+1

r+1 . With this new mesh in hand, we can increase the counter
of adaptivity steps r := r+1 and return to Step 1. The adaptivity algorithm
is stopped when the norm of the relative error estimate

errr =
‖un+1

r,ref − un+1
r ‖

‖un+1
r,ref‖

in some adaptivity step r is below a given relative error tolerance. Then we
define un+1 := un+1

r , τn+1 := τn+1
r , and proceed to the next time step.

18



7.1. Comparison of low-order h-FEM and hp-FEM with dynamical meshes

The benchmark problem from Section 5 can be used to compare the
performance of adaptive low-order h-FEM and adaptive hp-FEM. We keep
the same parameter values as in Section 5, including the time step ∆t = 0.1
and front steepness S = 20. In all cases, a relative error tolerance for spatial
adaptivity of 1% is used as a stopping criterion. For this computation we
use the fully implicit fifth-order three-stage Radau IIA method that virtually
eliminates the temporal error.

Figs. 18 – 20 show approximate solutions and meshes for t = 2.5, t =
5.0 and t = 7.5 obtained with adaptive hp-FEM. In the mesh images, the
numbers stand for polynomial degrees. All elements are quadrilaterals. Two
colors within one element mean different directional polynomial degrees.

Figure 18: Approximate solution and mesh, time t = 2.5.

Figure 19: Approximate solution and mesh, time t = 5.0.

19



Figure 20: Approximate solution and mesh, time t = 7.5.

In Fig. 21 we present an analogous result to the hp-FEM mesh shown in
the right part of Fig. 18, but now for adaptive h-FEM with p = 2. While for
the hp-FEM the number of DOF at t = 2.5 was 2637 and for h-FEM with
p = 2 it was 6707. For h-FEM with p = 1 the problem size grew rapidly and
the computation was stopped after it exceeded 60000 DOF.

Figure 21: Mesh for adaptive h-FEM with p = 2 at t = 2.5.

A graphical overview of how the number of DOF evolves with physical
time for these three computations is shown in Fig. 22. The fact that the
number of DOF is not growing or descending monotonically is due to the
stopping criterion. In each time step the adaptivity algorithm stops imme-
diately after the error estimate is less than 1%, but the final value can differ
from one time step to another. If the value of the error estimate in step n+1
is greater than in step n, then the number of DOF in step n+ 1 can be less
compared to step n. Whether this happens or not is random.

20



Figure 22: Problem size as a function of physical time.

8. Conclusion and Outlook

We presented a novel adaptive algorithm for time-dependent PDE prob-
lems that makes it possible to combine easily adaptive hp-FEM discretization
in space with arbitrary Runge-Kutta methods in time. The Runge-Kutta
method is selected at runtime by supplying its Butcher’s table. We believe
that this technique can be employed with minor changes for low-order fi-
nite element methods, finite volume methods, and Discontinuous Galerkin
methods.

From the point of view of time integration, of particular interest are
embedded implicit higher-order methods that can serve as a basis of very
simple and efficient adaptive time-stepping schemes. We have numerically
verified around 30 Butcher’s tables and made them available in such a way
that everyone can repeat the calculation in his/her own web browser via a
few mouse clicks.

We introduced a new time-dependent benchmark problem with an exact
solution that contains a moving front of arbitrary steepness. This benchmark
was used to compare the quality of seven embedded implicit higher-order
Runge-Kutta methods. The new benchmark problem was also used to com-
pare the performance of adaptive low-order h-FEM with adaptive hp-FEM
in space.

Our next steps will lead to the generalization of this method to mul-
tiphysics coupled problems, as well as to PDE systems where the time-

21



derivative is not present in all equations (such as in incompressible Navier-
Stokes equations).

Acknowledgment

The work of the first author was supported by Subcontract No. 00089911
of Battelle Energy Alliance (U.S. Department of Energy intermediary) and
by the Grant No. IAA100760702 of the Grant Agency of the Academy of
Sciences of the Czech Republic.

References

[1] E. Bänsch: An Adaptive Finite-Element Strategy for the Three-
Dimensional Time-Dependent Navier-Stokes Equations, J. Com-
put. Appl. Math. 36 (1991) 328.

[2] R. Bermejo, J. Carpio: A Space-Time Adaptive Finite Ele-
ment Algorithm Based on Dual Weighted Residual Methodology
for Parabolic Equations. SIAM J. Scientific Computing (2009),
3324 3355.

[3] S.R. Billington, Type-Insensitive Codes for the Solution of Stiff
and Nonstiff Systems of Ordinary Differential Equations. In: Mas-
ter Thesis, University of Manchester, United Kingdom (1983).

[4] J.C. Butcher: Numerical Methods for Ordinary Differential Equa-
tions, J. Wiley & Sons, 2003.

[5] J.R. Cash: Diagonally Implicit Runge-Kutta Formulae with Error
Estimates, J. Inst. Maths Applies (1979) 24, 293-301.

[6] L. Demkowicz: Computing with hp-Adaptive Finite Elements,
Taylor & Francis, 2007.

[7] L. Dubcova, P. Solin, J. Cerveny, P. Kus: Space and Time Adap-
tive Two-Mesh hp-FEM for Transient Microwave Heating Prob-
lems, Electromagnetics, Vol. 30, Issue 1, pp. 23 - 40, 2010.

[8] FEMhub Online Laboratory: http://femhub.org, retrieved June
25, 2011.

22



[9] Y.T. Feng, D. Peric: A Time-Adaptive Space-Time Finite El-
ement Method for Incompressible Lagrangian Flows with Free
Surfaces: Computational Issues, Comput. Methods Appl. Mech.
Engrg. 190 (2000) 499-518.

[10] J. Hesthaven, T. Warburton: Nodal Discontinuous Galerkin Meth-
ods: Algorithms, Analysis, and Applications. Springer, 2008.

[11] M.E. Hosea, L.F. Shampine: Analysis and Implementation of TR-
BDF2, Applied Numerical Mathematics 20, (1996) 21-37.

[12] P. Houston, C. Schwab, E. Süli: Discontinuous hp-Finite Ele-
ment Methods for Advection-Diffusion-Reaction Problems, SIAM
J. Numer. Anal. (2002) 2133-2163.

[13] F. Ismail et al: Embedded Pair of Diagonally Implicit Runge-
Kutta Method for Solving Ordinary Differential Equations, Sains
Malaysiana 39 (2010), 10491054.

[14] H.C. Krokowski et al: hp-Finite Element Methods for Singular
Perturbations, Springer Berlin Heidelberg, 2008.

[15] J. Lang, D. Teleaga: Towards a Fully Space-Time Adaptive FEM
for Magnetoquasistatics, IEEE Transactions on Magnetics (2008),
1238 - 1241.

[16] D. Meidner: Adaptive Space-Time Finite Element Methods for
Optimization Problems Governed by Nonlinear Parabolic Sys-
tems, Ph.D. thesis, Universitt Heidelberg, Heidelberg, 2007.

[17] W. Mitchell: A Survey of hp-Adaptive Strategies for Elliptic Par-
tial Differential Equations, Recent Advances in Computational
and Applied Mathematics (T. E. Simos, ed.), Springer, 2011, 227-
258.

[18] M. Moeller: Adaptive high-resolution finite element schemes,
Ph.D. dissertation, Technical University of Dortmund, 2008.

[19] M. Schmich, B. Vexler: Adaptivity with Dynamic Meshes for
Space-Time Finite Element Discretizations of Parabolic Equa-
tions. SIAM J. Scientific Computing (2008), 369 393.

23



[20] P. Solin, J. Cerveny, L. Dubcova, D. Andrs: Monolithic Discretiza-
tion of Linear Thermoelasticity Problems via Adaptive Multimesh
hp-FEM, J. Comput. Appl. Math 234 (2010) 2350 - 2357.

[21] P. Solin, L. Dubcova, J. Kruis: Adaptive hp-FEM with Dynamical
Meshes for Transient Heat and Moisture Transfer Problems, J.
Comput. Appl. Math. 233 (2010) 3103-3112.

[22] P. Solin, K. Segeth, I. Dolezel: Higher-Order Finite Element Meth-
ods, CRC Press, 2003.

[23] B. Stamm, T. P. Wihler: hp-Optimal Discontinuous Galerkin
Methods for Linear Elliptic Problems, EPFL-IACS report
07.2007.

[24] L.L. Thompson, D. He: Adaptive Space-Time Finite Element
Methods for the Wave Equation on Unbounded Domains, Com-
put. Methods in Appl. Mech. Engrg. (2005) 1947-2000.

[25] Wikipedia page on Runge-Kutta Methods: http://en.wikipedia.
org/wiki/Runge-Kutta methods. Retrieved June 25, 2011.

24


