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Abstract. We are concerned with a model of ionic polymer-metal composite (IPMC)
materials that consists of a coupled system of the Poisson and Nernst-Planck equa-
tions, discretized by means of the finite element method (FEM). We show that due to
the transient character of the problem it is efficient to use adaptive algorithms that are
capable of changing the mesh dynamically in time. We also show that due to large
qualitative and quantitative differences between the two solution components, it is
efficient to approximate them on different meshes using a novel adaptive multimesh
hp-FEM. The study is accompanied with numerous computations and comparisons of
the adaptive multimesh hp-FEMwith several other adaptive FEM algorithms.
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1 Introduction

Ionic Polymer-Metal Composites (IPMC) have been studied during the past two decades
for their potential to serve as noiseless mechanoelectrical and electromechanical trans-
ducers [1, 3, 4, 6–8, 14]. The advantages of IPMC over other electroactive polymer actu-
ators are low voltage bending, high strains (> 1%), and an ability to work in wet envi-
ronments. A typical IPMC consists of a thin sheet of polymer (often Nafion or Teflon)
which is sandwiched between noble metal electrodes such as platinum or gold. When
fabricated, the polymer membrane is saturated with certain solvent and ions such as wa-
ter and H+. When a voltage is applied to the electrodes, the counter ions start migrating
due to the imposed electric field. By dragging along the solvent, the osmotic pressure
difference near the electrodes results in bending of the material (see Fig. 1).
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Figure 1: Conceptual model of the actuation of IPMC. Initial counter ion distribution (a) and the distribution
and resulting bending after applying a voltage (b).

In this study we will model IPMCmaterials via a multiphysics coupled problem con-
sisting of the Poisson and Nernst-Planck equations (abbreviated by PNP in the follow-
ing). These equations are used to model charge transport in materials that includes ionic
migration, diffusion, and convection. The charge transport process is a key mechanism
for electromechanical transduction.

The PNP system is highly nonlinear and for a typical domain with two electrodes,
largest differences in charge concentration occur in a very narrow region near the bound-
ary. The computing power required for a full scale problem is significant. This is why
we are interested in exploring adaptive algorithms – we hope to obtain meshes that are
optimal in terms of calculation time and calculation error.

The Nernst-Planck equation for a mobile species— in our case for counter ions— has
the form

∂C

∂t
+∇·(−D∇C−zµFC∇φ)=0. (1.1)

Here C stands for the counter ion concentration, D is diffusion, µ mobility, F Faraday
constant, φ voltage, and z the charge number. We have neglected the velocity of the
species as in our case it can be assumed zero. The Poisson equation has the form

−∇2φ=
Fρ

ε
(1.2)

where ε is the absolute dielectric permittivity. The charge density ρ=C−C0 where C0 is
a constant anion concentration.

The outline of the paper is as follows: Section 2 shows that the solution components
C and φ have very different behavior, which is the reason why it is difficult to find a com-
monmesh that would be optimal for both of them. This explains whywe are interested in
approximation them on individual meshes equipped with mutually independent adap-
tivity mechanisms. The PNP model is presented in Section 3 where also its weak formu-
lation for the Newton’s method is derived. Section 4 presents a brief overview of a novel
adaptive multimesh hp-FEM method [2,10–12] that is used to solve the problem numeri-
cally. Numerical results and comparisons are presented in Section 5, and conclusion and
outlook are drawn in Section 6.
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2 Motivation

In this section we use a simplified one-dimensional PNP model to illustrate the principal
difficulties encountered in the numerical solution. Table 1 shows relevant constants.

Table 1: Constants used in the Poisson-Nernst-Planck system of equations.

Constant Value Unit Description

D 10×10−11 m2

s Diffusion constant
z 1 - Charge number

F 96,485 C
mol Faraday number

R 8.31 J
mol·K The gas constant

µ
(

= D
RT

)

4.11×10−14 s
mol·K Mobility

C0 1,200 mol
m3 Anion concentration

ε 0.025 F
m Electric permittivity

Fig. 2 shows a typical solution for C and φ at t=0.1 s and t=3.0 s.
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Figure 2: Sample concentration C and voltage φ in a 1D domain Ω ⊂ R. Dirichlet boundary conditions
(V∂Ω1

= 0 V and V∂Ω2
= 4 V) were applied to the Poisson equation (1.2) and Neumann conditions to the

Nernst-Planck equation (1.1).

The reader can observe that the solution has two notable characteristics: For the most
part of the domain Ω, the gradient ∇C= 0. Close to ∂Ω2, ∇C is nonzero and moving
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in time, and ∇C is very large at ∂Ω1. At the same time, φ is a ”nice” smooth function
for the most part of Ω but it has a large gradient at ∂Ω2. This makes the choice of an
optimal mesh highly problematic. Even if the solution was stationary, an optimal mesh
for C could never be optimal for φ and vice versa.

Furthermore, the shape of the solution in Fig. 2 suggests that the polynomial degree of
finite elements in the middle of the domain Ω and near the boundaries ∂Ω1, ∂Ω2 should
be different — large high-degree elements should be used in the middle of the domain
while small low-degree ones should be used in the boundary layers. The qualitative
differences in the solution components C and φ also suggest that using different meshes
would be beneficial.

3 Model

We consider a rectangular 2D domain Ω ⊂ R
2 with boundaries ∂Ω1...4 ⊂ ∂Ω, shown in

Fig. 3.

Figure 3: Calculation domain Ω⊂R
2 with boundaries ∂Ω1...4⊂∂Ω.

As there is no flow through the domain’s boundary, Eq. (1.1) is equipped with a Neu-
mann boundary condition

−D
∂C

∂n
−zµFC

∂φ

∂n
=0. (3.1)

Furthermore, we prescribe a positive constant voltage Vpos on Ω1 and zero voltage on Ω3:

φ∂Ω1
= Vpos, (3.2)

φ∂Ω3
= 0. (3.3)

On the rest of the boundary, φ has zero normal derivatives, and thus we prescribe a
Neumann boundary condition

∂φΩ2

∂n
=

∂φΩ4

∂n
=0. (3.4)

3.1 Weak form of the PNP system

To make our results easily reproducible, in the following we present the derivation of
weak forms of Eqs. (1.1) and (1.2), as well as formulas for the Jacobian matrix and residual
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vector that are used in actual computations. To simplify notation, we define

K= zµF, L=
F

ε
. (3.5)

Eqs. (1.1) and (1.2) yield

∂C

∂t
−D∇2C−K∇·(C∇φ) = 0, (3.6)

−∇2φ−L(C−C0) = 0. (3.7)

Boundary condition Eq. (3.1) has the form

−D
∂C

∂n
−KC

∂φ

∂n
=0. (3.8)

As the second derivatives of both C and φ are present in the equations, the appropriate
function space for them is the Sobolev space V=H1(Ω) where

H1(Ω)=
{

v∈L2(Ω); ∇v∈
[

L2(Ω)
]2
}

.

In order to derive theweak form of the Nernst-Planck equation Eq. (3.6), we first multiply
it with a test function vC∈V and integrate over the domain Ω,

∫

Ω

∂C

∂t
vCdx−

∫

Ω
D∇2CvCdx−

∫

Ω
K∇C ·∇φvCdx−

∫

Ω
KC∇2φvCdx=0. (3.9)

Applying the Green’s first identity to the terms that contain second derivatives, we obtain

∫

Ω

∂C

∂t
vCdx+D

∫

Ω
∇C ·∇vCdx−K

∫

Ω
∇C ·∇φvCdx

+K
∫

Ω
∇
(

CvC
)

·∇φdx−D
∫

∂Ω

∂C

∂n
vCdS−

∫

∂Ω
K

∂φ

∂n
CvCdS=0. (3.10)

Expanding the nonlinear term and using the boundary condition (3.8), we have

∫

Ω

∂C

∂t
vCdx+D

∫

Ω
∇C ·∇vCdx−K

∫

Ω
∇C ·∇φvCdx

+K
∫

Ω
∇φ·∇CvCdx+K

∫

Ω
C
(

∇φ·∇vC
)

dx=0. (3.11)

After the second and third terms cancel out, we obtain the final weak form of the Nernst-
Planck equation

∫

Ω

∂C

∂t
vCdx+D

∫

Ω
∇C ·∇vCdx+K

∫

Ω
C
(

∇φ·∇vC
)

dx=0. (3.12)
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Analogously we derive also the weak form of the Poisson equation (3.7),

−
∫

Ω
∇2φvφdx−

∫

Ω
LCvφdx+

∫

Ω
LC0v

φdx=0. (3.13)

Performing integration by parts and taking into account the boundary conditions for φ,
we obtain

∫

Ω
∇φ·∇vφdx−

∫

Ω
LCvφdx+

∫

Ω
LC0v

φdx=0. (3.14)

3.2 Jacobian matrix and residual vector for the Newton’s method

To employ the Newton’s method for the nonlinear system (3.12), (3.14), formulas for
the Jacobian matrix and residual vector need to be derived. Time discretization will be
performed using the second-order Crank-Nicolson method. The unknown solution com-
ponents Cn+1 and φn+1 at the end of the time step are expressed as linear combinations

of finite element basis functions vCk and v
φ
k with unknown coefficients,

Cn+1=C(Yn+1) =
NC

∑
k=1

yCk v
C
k , (3.15)

φn+1=φ(Yn+1) =
Nφ

∑
k=1

y
φ
k v

φ
k . (3.16)

Here Yn+1 is a coefficient vector of length NC+Nφ comprising the unknown solution

coefficients yCk and y
φ
k (in this order). We will also be using Cn=C(Yn) and φn=φ(Yn) for

the previous time step solutions.
With the notation (3.15), (3.16), the time discretized Eq. (3.12) leads to the formula for

the first part FC of the residual vector F,

FC
i (Y) =

∫

Ω

C(Y)

τ
vCi dx−

∫

Ω

Cn

τ
vCi dx

+
1

2

[

D
∫

Ω
∇C(Y)·∇vCi dx+D

∫

Ω
∇Cn ·∇vCi dx

]

+
1

2

[

K
∫

Ω
C(Y)

(

∇φ(Y)·∇vCi

)

dx+K
∫

Ω
Cn

(

∇φn ·∇vCi

)

dx

]

(3.17)

where i= 1,2,.. .,NC. Analogously, Eq. (3.14) defines the second part Fφ of the residual
vector F,

F
φ
i (Y)=

∫

Ω
∇φ(Y)·∇v

φ
i dx−

∫

Ω
LC(Y)v

φ
i dx+

∫

Ω
LC0v

φ
i dx (3.18)

where i = NC+1,NC+2,.. .,NC+Nφ. The nonlinear discrete problem that needs to be
solved at the end of each time step thus has the form F(Y)=0.
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The Jacobian matrix J(Y)=DF/DY has a 2×2 block structure,

J(Y)=













∂FC
i

∂yCj

∂FC
i

∂y
φ
j

∂F
φ
i

∂yCj

∂F
φ
i

∂y
φ
j













, (3.19)

and its entries are obtained by calculating the partial derivatives of F with respect to the
components of the coefficient vector Y. For this it is useful to realize that

∂C(Y)

∂yCj
=vCj ,

∂∇C(Y)

∂yCj
=∇vCj , etc..

We obtain

∂FC
i

∂yCj
(Y) =

∫

Ω

1

τ
vCj v

C
i dx+

1

2
D
∫

Ω
∇vCj ·∇vCi dx+

1

2
K
∫

Ω
vCj

(

∇φ(Y)·∇vCi

)

dx, (3.20)

∂FC
i

∂y
φ
j

(Y) =
1

2
K
∫

Ω
C(Y)

(

∇v
φ
j ·∇vCi

)

dx, (3.21)

∂F
φ
i

∂yCj
(Y) = −

∫

Ω
LvCj v

φ
i dx, (3.22)

∂F
φ
i

∂y
φ
j

(Y) =
∫

Ω
∇v

φ
j ·∇v

φ
i dx. (3.23)

3.3 Newton’s iteration

At the beginning of the (n+1)st time step we set Yn+1
0 =Yn, where Yn is the coefficient

vector that was calculated in the nth time step (or coming from the initial condition if
n=0). We set k=0 and run the Newton’s iteration

J(Yn+1
k )δYn+1

k+1 = −F(Yn+1
k ),

Yn+1
k+1 = Yn+1

k +δYn+1
k+1 ,

k := k+1

over k until it converges. Then we setYn+1 :=Yn+1
k . We use a combined stopping criterion

that makes sure that both the norm of the residual vector ‖F(Yn+1)‖ as well as the norm
of the increment ‖δYn+1‖ are sufficiently small.
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4 Adaptive hp-FEM and the Open-Source Library Hermes

In traditional low-order FEM (based on piecewise-linear or piecewise quadratic elements),
refining an element is not algorithmically complicated, and so the most difficult part is
to find out what elements should be refined. To do this, various techniques ranging from
rigorous guaranteed a-posteriori error estimates to heuristic criteria such as residual error
indicators or error indicators based on steep gradients are employed.

However, none of these approaches is suitable for multiphysics coupled problems or
higher-order finite element methods: Rigorous guaranteed error estimates only exist for
very simple problems (such as linear elliptic PDE) and only for low-order finite elements.
Heuristic techniques are usually somehow doable for all problems, but they fail in more
complicated situations. Moreover, they lack a transparent relation to the true approxima-
tion error and thus they may give wrong results.

Automatic adaptivity in higher-order finite element methods (hp-FEM) is much dif-
ferent from adaptivity in low-order FEM. Firstly, analytical error estimates capable of
guiding adaptive hp-FEM do not exist even for the simplest linear elliptic equations, not
speaking about nonlinear multiphysics coupled systems. Secondly, a higher-order ele-
ment can be refined in many different ways, as illustrated in Fig. 4.

Figure 4: Many possible refinement candidates for a fourth-order element.

The number of possible element refinements is implementation dependent. In gen-
eral it is very low in h-adaptivity and p-adaptivity, and much higher in hp-adaptivity.
Moreover, this number grows very fast when anisotropic refinements are enabled.

4.1 The Hermes Library

Hermes† is a free and open-source C++ library that implements higher-order finite ele-
ments approximations and adaptive hp-FEM. It supports 8 different adaptivity modes –
three isotropic and five anisotropic. The isotropic refinements are h-isotropic (H ISO), p-
isotropic (P ISO), hp-isotropic (HP ISO). Anisotropic refinement modes are h-anisotropic
(H ANISO), hp-anisotropic-h (HP ANISO H), p-anisotropic (P ANISO), hp-anisotropic-p

†http://hpfem.org/hermes
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(HP ANISO P), and hp-anisotropic (HP ANISO). The eight adaptivity modes are sum-
marized in Fig. 5. It must be noted that in case of HP ANISO H, only element size is
adapted anisotropically whereas polynomial degree is adapted isotropically. The oppo-
site holds true for HP ANISO P.

Figure 5: Refinement candidates for every refinement mode for quad type elements.

Note that triangular elements do not support anisotropic refinements. Due to the
large number of refinement options, classical error estimators that provide a constant er-
ror estimate per element, cannot be used to guide automatic hp-adaptivity. For this, one
needs to know the shape of the approximation error. Hermes uses a pair of approxima-
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tions with different orders of accuracy to obtain this information: coarse mesh solution
and fine mesh solution. The initial coarse mesh is read from the mesh file, and the ini-
tial fine mesh is created through its global refinement both in h and p. The fine mesh
solution is the approximation of interest both during the adaptive process and at the end
of computation. Global orthogonal projection of the fine mesh solution on the coarse
mesh is used to extract the low-order part from the reference solution. The adaptivity
algorithm is guided by the difference between the reference solution and its low-order
part [9]. Note that this approach to automatic adaptivity is PDE-independent and thus
naturally applicable to a large variety of multiphysics coupled problems.

4.2 Multimesh hp-FEM

Inmultiphysics PDE systems such as Poisson-Nernst-Planck it can happen that one phys-
ical field is very smooth where others are not, as we illustrated in Fig. 2. If all the fields
are approximated on the same mesh, then unnecessary refinements will be present in
smooth areas where they are not necessary. This can be very wasteful.

Hermes implements a novel adaptive multimesh hp-FEM [2,10,12] that makes it pos-
sible to approximate different fields on individual meshes, without breaking the mono-
lithic structure of the coupling mechanism. For practical reasons, the meshes in the sys-
tem are not allowed to be completely independent – they have a common coarse mesh
that we call master mesh. The master mesh is there for algorithmic purposes only and it
may not even be used for discretization purposes. Every mesh in the system is obtained
from the master mesh via an arbitrary sequence of elementary refinements. Assembling
is done on a union mesh, a geometrical union of all meshes in the system (imagine printing
all meshes on transparencies and positioning them on top of each other).

The union mesh is not constructed physically in the computer memory – it merely
serves as a hint to correctly transform the integration points while integrating over sub-
elements of elements in the existing meshes. As a result, the multimesh discretization
of the PDE system is monolithic in the sense that no physics is lost — all integrals in
the discrete weak formulations are evaluated exactly up to the error in the numerical
quadrature. The exact preservation of the coupling structure of multiphysics coupled
problems makes the multimesh hp-FEM very different from various interpolation and
projection based methods that suffer from errors made while transferring data between
different meshes in the system.

5 Numerical Results and Comparisons

The solutions to the PNP problem exhibit a specific behavior that was described above.
In order to find the best adaptive method to deal with this type of problems, we per-
formed numerous computations using all adaptivity modes in both the single-mesh and
multi-mesh regimes. In the numerical experiments we paid attention to the relative error,
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cumulative CPU time, and problem size in terms of number of degrees of freedom (DOF)
in each time step.

We used two types of initial meshes — a finer mesh shown in Fig. 6 (b) was used for
p-adaptivity and a very coarse initial mesh shown in Fig. 6 (a) was used for h-adaptivity
and hp-adaptivity.

Figure 6: Initial coarse mesh (a) and refined mesh (b). The coarse mesh (a) and refined mesh (b) were used in
the initial calculations, the latter one in case of p-adaptivity (including HP ANISO P).

An example of the solution at t= 0.7 s and t= 3.0 s calculated with the HP ANISO
refinement mode is shown in Figs. 7 and 8.

The reader can see that at t=0.7 s some ionic migration has already taken place and
large concentration gradients near the boundaries ∂Ω1 and ∂Ω3 have formed. The figures
also show that the meshes at t=0.7 s and t=3.0 s are different.

5.1 Comparison of single mesh low-order FEM and hp-FEM

First of all, the low-order FEM and hp-FEM were compared. A single mesh H ANISO
with polynomial degrees p=1 and p=2 were compared to HP ANISOmode. The coarse
initial mesh as shown in Fig. 6 (a) was used in the solutions. The results are shown in
Figs. 9 and 10.

It can be seen that hp-FEM results in a shorter computing time and smaller number of
DOF than the low-order FEM. The same holds true for H ISO and HP ISO modes. In
fact, in case of H ISO the relative error did not converge to the pre-set threshold value
of 0.5%. Therefore, the h-FEM solutions will be omitted from the further comparisons.
Instead, only hp-FEM solutions on the coarse mesh and p-FEM solutions on the finemesh
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Figure 7: Concentration C and voltage φ at t=0.7 s.

Figure 8: Concentration C and voltage φ at t=3.0 s.

will be discussed. It must be also noted that the error converged to or below 0.5% for all
p-FEM and hp-FEM results, therefore the graphs of the error as a function of physical
time will not be presented.
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Figure 9: Number of degrees of freedom (DOF) as a function of physical time for single-mesh H ANISO (in
case of p=1 and p=2) and single-mesh HP ANISO.
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Figure 10: Cumulative CPU time as a function of physical time for single-mesh H ANISO (in case of p=1 and
p=2) and single mesh HP ANISO.

5.2 Comparison of single-mesh and multi-mesh hp-FEM

Running the simulation with different adaptivity modes and meshes showed that the
multi-mesh hp-FEM configuration resulted in the smallest problems, shortest computing
times, and better or the same error convergence compared to any single-mesh configura-
tion. This is illustrated for HP ANISO adaptivity mode in Figs. 11 and Fig. 12. The same
holds true for HP ISO mode.

Fig. 13 shows higher-order meshes in the adaptive multimesh hp-FEM computation for
C and φ at t= 0.7 s. Different colors mean different polynomial degrees. A diagonal
pattern inside an element tells that the element has different polynomial degrees in the
horizontal and vertical directions.

These result are in good agreement with Fig. 8 — in the vicinity of the boundaries ∂Ω1

and ∂Ω3, the concentration gradient is much greater than the voltage gradient. Therefore
the multimesh hp-FEM adaptivity algorithm has increased the maximum polynomial de-
gree for the C-space to 7 while the maximum polynomial degree for the φ-space is 2. One
can also see that the mesh is significantly more refined for C. Since these results are repre-
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Figure 11: Number of DOF as a function of physical time for single-mesh and multi-mesh configurations with
HP ANISO adaptivity mode.
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Figure 12: Cumulative CPU time as a function of physical time for single-mesh and multi-mesh configurations
with HP ANISO adaptivity mode.

sentative for all adaptivity modes, only multi-mesh configurations are considered in the
following.

5.3 Comparison of isotropic and anisotropic refinements

Next we would like to illustrate the role of anisotropic mesh refinements. Figs. 14 and 15
show typical results for the H ISO, H ANISO, HP ISO, HP ANISO adaptivity modes in
terms of DOF and cumulative CPU time.

Figs. 16 and 17 present a similar comparsion for the P ISO, P ANISO, and HP ANISO P
modes. Recall that these computations use a different initial mesh that was a-priori re-
fined in space.

As a conclusion, the reader can see that the anisotropic adaptivity modes always per-
form better than the isotropic ones. In particular, HP ANISO results into the smallest
problem size. In the p-adaptivity group, HP ANISO P leads to a small problem size con-
sistently in each time step, whereas P ISO and P ANISO yield large problems during the
first few time steps.
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Figure 13: Higher-order FEM mesh for C and φ at t=0.7 s.
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Figure 14: Number of DOF as a function of physical time for multi-mesh configurations with H ISO, H ANISO,
HP ISO, and HP ANISO adaptivity modes.

HP ANISO also results in the fastest computing time among hp-adaptivity group
whereas HP ANISO P results in the fastest overall computing time. This is due to the
fact that HP ANISO P calculation is performed on the refined mesh. Regardless, the
HP ANISO adaptivity mode is the most suitable for the PNP problem due to the small
size and relative fastness compared to the other adaptivity modes. A way to optimize the
computing time of HP ANISO will be considered next.
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Figure 15: Cumulative CPU time as a function of physical time for multi-mesh configurations with H ISO,
H ANISO, HP ISO, and HP ANISO adaptivity modes.
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Figure 16: Number of DOF as a function of physical time for multi-mesh configurations with P ISO, P ANISO,
and HP ANISO P adaptivity modes.
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Figure 17: Cumulative CPU times as a function of physical time for multi-mesh configurations with P ISO,
P ANISO, and HP ANISO P adaptivity modes.

5.4 Time stpe control of HP ANISO adaptivity

To optimize the calculation time of HP ANISO, an adaptive time step control was em-
ployed. The classical PID controller was used [2, 13]. Since C and φ change differently in
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Figure 18: Relative difference enC and enφ.
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Figure 19: Number of DOF as a function of physical time for HP ANISO with and without time step adaptivity.
The markers on the graphs indicate the time steps.
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Figure 20: Cumulative CPU times as a function of physical time for HP ANISO with and without time step
adaptivity. The markers on the graphs indicate the time steps.

time as was demonstrated in Figs. 7 and 8, the relative changes between the solutions at
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different time steps were monitored:

enC =
‖Cn−Cn−1‖

‖Cn‖
, (5.1)

enφ =
‖φn−φn−1‖

‖φn‖
. (5.2)

The relative changes to control the time step was calculated as follows:

en=max
{

enC, e
n
φ

}

. (5.3)

If en < δ where δ > 0 is a defined tolerance, then the time step for the next iteration is
increased smoothly to

τn+1=

(

en−1

en

)kP (

δ

en

)kl
[

(

en−1
)2

enen−2

]kD

τn, (5.4)

where parameters are from [13]:

kp=0.075, kl=0.175, kD=0.01. (5.5)

The tolerance δ was set to δ= 0.25 in the current optimization example. The calculated
enC and enφ are shown in Fig. 18. The HP ANISO problem size and computing time with
and without time step control are shown in Figs. 19 and 20. The reader can notice that
the computing time was reduced approximately 3 times when the time step control was
employed.

5.5 HP ANISOadaptivity with physicallymore realistic boundary conditions

In real physics calculations, the applied voltage on boundary ∂Ω1 is not constant. This
can be, for instance, due to the high resistance of the electrodes as explained in [5]. To see
how the HP ANISO adaptivity works for such situations, the voltage on the boundary
was applied as follows:

φΩ1
(x)=0.5[V]

x[m]

widthΩ1
[m]

+0.5[V], (5.6)

where widthΩ1
is the width of the boundary. The given boundary is effectively a linear

incrase of the voltage from φΩ1
(x=0) = 0.5 V to φΩ1

(x=widthΩ1
) = 1.0 V. Now the

concentration gradient ∇C and the voltage gradient∇φ are no longer effectively in 1D.
The calculated C and φ in Ω and correspondingmeshes and polynomial degrees of the

elements at t=0.7 s are shown in Figs. 21. Notice that the solution is different to the one
in Fig. 7. The HP ANISO adaptivity algorithm has particularly increased the polynomial
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Figure 21: Solutions C and φ and corresponding polynomial degrees of the elements at t= 0.7 s. HP ANISO
refinement mode was used. The height in the solution graphs indicates the value.

degree and refined themesh near Ω1 where a sharp concentration peak exists (compare to
Fig. 13). At t=3.0 s, the shape of the solution C is similar to the one in Fig. 8 and therefore
the polynomial space andmesh gets adapted accordingly. This example clearly illustrates
how the solution of PNPwith non-uniform boundary conditions is very dynamic in time,
particularly for C, and how the HP ANISO time dependent adaptivity finds an optimal
mesh and polynomial space to adapt to the dynamics of the problem.
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6 Conclusion and Outlook

In this work the system of Nernst-Planck-Poisson equations was solved using hp-finite
element method with adaptive multi-mesh configuration. The weak form, residuals and
the Jacobian matrix of the systemwere explicitly derived and implemented inHermes hp-
FEM time dependent adaptive solver. The solution for Nernst-Planck-Poisson problem
with two field variables C and φ results in very different field gradients in the space
and time. When using a conventional low order FEM, finding an optimal mesh for this
type of problem such that both the error of the solution and problem size remain small
throughout the time dependent solving process is difficult.

In the current work we showed that using the time dependent adaptivity, multi-
mesh configuration, and anisotropic hp refinements, the problem size remains very small
throughout the solving process while maintainging pre-set relative error of the solution.
Namely, Hermes refinement mode HP ANISO resulted in the smallest and fastest prob-
lem solution. Furthermore, using the multi-mesh configuration for the variables C and φ
was justified— the adaptivity algorithm did not refine the mesh of φ nor did increase the
polynomial degree throughout the adaptivity process. However, the mesh was signifi-
cantly refined for C and also the maximum polynomial degree was varied in the range of
2...9. So it is efficient to use multi-mesh in terms of the number of degrees of freedom.

Conclusively, by using hp-FEM with adaptive multi-mesh configuration we can pos-
sibly reduce the problem size of the Nernst-Planck-Poisson equation system significantly
while still maintaining prescribed precision of the solution. We believe, and this is yet to
be demonstrated, that this is especially important when dealing with 3D problems in a
large physical domain with non-uniform boundary conditions.
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