
Three Anisotropic Benchmark Problems

for Adaptive Finite Element Methods

Pavel Solina,b, Ondrej Certika,c, Lukas Korousd

aDepartment of Mathematics and Statistics, University of Nevada, Reno, USA
bInstitute of Thermomechanics, Academy of Sciences of the Czech Republic, Prague

cInstitute of Physics, Academy of Sciences of the Czech Republic, Prague
dCharles University, Prague, Czech Republic

Abstract

In this paper we provide three benchmark problems with known exact solu-
tions that can be used to assess the ability of adaptive finite element algo-
rithms to handle anisotropically-behaved solutions. The first one is a Poisson
equation with a smooth solution that only changes in one spatial direction.
The second one is a singularly-perturbed linear elliptic equation whose solu-
tion exhibits a boundary layer, and the last one is a two-equation system that
contains a boundary layer in one solution component only. In an appendix
we show sample results obtained with the open source library Hermes.1
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1. Introduction

The number of adaptive finite element libraries is growing – let us mention
(in alphabetical order) for example Alberta [1], DealII [2], FEniCS [3], FETK
[4], Hermes [5], libMesh [6], Phaml [7], PHG [8], 2dhp90 [9] and there are
many others. A natural question that arises is how do they compare to each
other? Unfortunately, comparison efforts are usually inhibited at the very
beginning by diverse installation requirements, supporting libraries, input
and output data formats, and different usage of various codes. And even if

Email addresses: solin@unr.edu (Pavel Solin), ondrej@certik.cz (Ondrej Certik),
lukas.korous@gmail.com (Lukas Korous)

1http://hpfem.org/hermes

Preprint submitted to Applied Mathematics and Computation October 6, 2010



these problems could be overcome, not many benchmarks with known exact
solutions are available to test various aspects of automatic adaptivity.

At this point we would like to acknowledge the pioneering work of Dr.
William Mitchell (NIST) who not only collected a suite of 12 benchmark
problems for adaptive FEM [3], but who also implemented and compared
several hp-adaptive finite element algorithms by various authors [4].

This paper presents three benchmark problems with anisotropically-be-
haved solutions (not contained in [3]) that are designed to test the ability
of adaptive algorithms to handle anisotropic refinements. The benchmark
problems and their solutions are formulated in Sections 2 - 4. In a separate
second part of the paper (Appendix A) we show for illustration sample results
obtained with the open source Hermes library (http://hpfem.org/hermes).

2. Benchmark No. 1 ”Beginner”

The first benchmark problem is a Poisson equation

−∆u = sin(x) (1)

in the domain Ω = (0, π)2, equipped with a zero Dirichlet boundary condition
on the left edge, zero Neumann boundary conditions on the top and bottom
edges, and a Neumann condition ∂u/∂ν = −1 on the right edge. Here ν is the
unit outer normal vector to the boundary. The exact solution u(x, y) = sin(x)
to this problem is shown in Fig. 1.

Figure 1: Exact solution to the first benchmark problem.
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The goal of the benchmark is to attain a relative error below 10−4 % in
the H1-norm with as few degrees of freedom (DOF) as possible. Using 1D
analysis [8], one can show that the minimum number of DOF needed is 16.

3. Benchmark No. 2 ”Intermediate”

Next we consider a singularly perturbed elliptic equation

−∆u+ k2u− k2 = g (2)

where k is a real constant. Here we use the value k = 100 and the problem
can be made harder when k is increased. Equation (2) is equipped with
homogeneous Dirichlet boundary conditions and solved in the domain Ω =
(−1, 1)2. For convergence studies we use a manufactured exact solution

v(x, y) = û(x)û(y), (3)

where

û(x) = 1−
ekx + e−kx

ek + e−k
(4)

is the exact solution to a similar one-dimensional problem −∆u+k2u−k2 =
0 in the interval (−1, 1), equipped with homogeneous Dirichlet boundary
conditions. The right-hand side g is calculated by inserting (3) into (2).

Figure 2: Exact solution to the second benchmark problem for k = 100.
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As in the previous section, also here the goal is to attain a relative error
less or equal to 10−4 % in the H1-norm with as few degrees of freedom (DOF)
as possible.

4. Benchnark No. 3 ”Advanced”

The Fitzhugh-Nagumo equation [2, 5],

−d2u∆u− f(u) + σv = g1, (5)

−d2v∆v − u+ v = g2,

is a prominent example of an activator-inhibitor system in two-component
reaction-diffusion equations. The unknowns u, v represent the voltage and
v-gate, respectively, and the nonlinear function

f(u) = λu− u3
− κ (6)

describes how an action potential travels through a nerve. Since the focus of
this benchmark is on adaptivity rather than on nonlinear solver capabilities,
we can replace (6) with a simpler function

f(u) = u (7)

which makes the problem linear. In (5), du, dv, σ are positive constants, and
g1(x, y) and g2(x, y) are spatially-dependent source terms. Both u and v are
zero on the boundary of our domain of interest which is a square Ω = (−1, 1)2.

For convergence studies we define an exact solution pair u(x, y) and
v(x, y), where

u(x, y) = cos
(

π

2
x
)

cos
(

π

2
y
)

and v(x, y) is taken from (3),

v(x, y) = û(x)û(y).

Both u and v are inserted into (5) in order to calculate the corresponding
source functions g1 and g2. The exact solution pair u, v is shown in Figs. 3
and 4.
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Figure 3: Exact solution to the third benchmark problem (first component u).

Figure 4: Exact solution to the third benchmark problem (second component v).

The goal of this benchmark is to attain a relative error less or equal to
10−2 % in the product H1-norm (square root of the sum of component norms
squared) with as few degrees of freedom (DOF) as possible.

5. Conclusion and Outlook

We have presented three new benchmark problems with known exact so-
lutions that can be used to assess the ability of adaptive FEM codes to handle
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anisotropic refinements. Since for adaptive FEM codes the resulting mesh
should be observed as part of the final solution, we are currently expanding
our research of optimal meshes.
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Appendix A. Sample Results Obtained with Hermes

In the second part of this paper we provide sample solutions to the above
benchmark problems using the Hermes library. The results are provided for
illustration purposes only and they should not be used as reference values.

Brief Description of the Hermes Library

Hermes is an open source C++ library for rapid development of adaptive
hp-FEM and hp-DG solvers. The library is developed by the hp-FEM group
at the University of Nevada, Reno (http://hpfem.org) and it is available
under the GPL license.

Hermes offers eight different modes of automatic adaptivity:

1. H ISO (h-adaptivity with isotropic refinements),

2. H ANISO (h-adaptivity with possibly anisotropic refinements),

3. P ISO (p-adaptivity with isotropic polynomial degrees in elements),

4. P ANISO (p-adaptivity with possibly anisotropic polynomial degrees
in elements),

5. HP ISO (hp-adaptivity with isotropic polynomial degrees in elements
and isotropic spatial refinements),

6. HP ANISO H (hp-adaptivity with isotropic polynomial degrees in ele-
ments and possibly anisotropic spatial refinements),

7. HP ANISO P (hp-adaptivity with possibly anisotropic polynomial de-
grees in elements and isotropic spatial refinements),

8. HP ANISO (hp-adaptivity with possibly anisotropic polynomial de-
grees in elements and possibly anisotropic spatial refinements).
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Main Idea of the Adaptivity Algorithm

In each adaptivity step the algorithm performs a global hp mesh refine-
ment, calculates an approximate (reference) solution uref on the refined mesh,
obtains its closest representant ucoarse on the original coarse mesh via an or-
thogonal projection, and evaluates the approximate error function

eh,p = uref − ucoarse.

In fact, ucoarse is the low-order part of uref and so eh,p is an excellent indicator
where ucoarse needs to be improved. Next, the algorithm identifies elements
with the largest error norm, and selects them for refinement. Last, in a
loop over all selected elements K, the algorithm projects uref locally on all
refinement candidates on K. Here is where the various adaptivity modes
differ – the simplest one is H ISO with just one refinement option (a 4-split)
and mode 8 is the most general with around 100 options. This looks like
lots of CPU time, but in reality the projections are extremely fast since
each refinement candidate comes with a local orthonormal basis. Among
all considered refinements of K, the algorithm select the one which yields
the smallest projection error (weighted with the number of new degrees of
freedom that the candidate adds to the discrete problem).

The algorithm is completely PDE-independent, it does not contain any
tuning parameters, and in contrast to various popular gradient-based tech-
niques it works equally well for low-order and high-order elements. Thanks to
its robustness and simplicity, the algorithm works very well for multiphysics
PDE systems where it is used in combination with multimesh hp-FEM [7].

Benchmark No. 1

We begin with adaptive hp-FEM with anisotropic refinements (adaptivity
mode HP ANISO in Hermes), starting from a mesh that contains only one
bilinear element. The initial mesh is shown in Fig. A.5 (left). In a few adap-
tivity steps, the polynomial degree of this element is increased anisotropically
and the element is never refined in space. The resulting single-element mesh
with 16 DOF is shown in Fig. A.5 (right). The diagonal pattern indicates
different polynomial degrees (8 in the x-direction and 1 in the y-direction).
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Figure A.5: Initial mesh (left) and final mesh (right) for hp-FEM with anisotropic refine-
ments.

The final relative error estimate in H1-norm was 3.6796e-05 % and it was
identical to the exact error in all printed digits.

We also solved this benchmark with adaptive h-FEM with quadratic ele-
ments, with anisotropic refinements enabled and disabled (adaptivity modes
H ANISO and H ISO in Hermes, respectively). Final meshes for the h-FEM
computations are not shown here – they were so fine that they appeared
as black squares. The h-FEM with isotropic refinements was stopped after
reaching 100,000 DOF. Figs. A.6 and A.7 compare all three adaptivity modes
from the point of view of DOF and CPU convergence.

Figure A.6: DOF convergence graphs.
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Figure A.7: CPU time convergence graphs.

Benchmark No. 2

First we employ hp-FEM with anisotropic refinements (HP ANISO mode
in Hermes) and start from a 100-element mesh that was obtained through
several consecutive refinements towards the boundary. Note that herewith
we use some a-priori knowledge of the solution. The initial mesh and the
final mesh with 3,913 DOF are shown in the left and right part of Fig. A.8,
respectively.

Figure A.8: Initial mesh (left) and final mesh (right) for hp-FEM with anisotropic refine-
ments.
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We also solved this benchmark using adaptive h-FEM with quadratic ele-
ments, with anisotropic refinements enabled and disabled (adaptivity modes
H ANISO and H ISO in Hermes, respectively). The corresponding final
meshes are shown in Fig. A.9.

Figure A.9: Resulting meshes for h-FEM with quadratic elements. Anisotropic refinements
enabled (left) and disabled (right).

Again, computations were stopped when the number of DOF exceeded
100,000. Figs. A.10 and A.11 compare all three adaptivity modes from the
point of view of DOF and CPU time convergence.

Figure A.10: DOF convergence graphs.
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Figure A.11: CPU time convergence graphs.

Benchmark No. 3

As in the previous two cases, we begin with hp-FEM with anisotropic
refinements (HP ANISO mode in Hermes). The initial mesh for the first
solution component is just one quadratic element and the initial mesh for the
second component has 100 quadratic elements, as shown in Fig. A.12

Figure A.12: Initial meshes for the two solution components.

The final meshes for the first and second solution components are shown
in Fig. A.13. They contain 49 and 1,809 DOF, respectively (total of 1,858
DOF).
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Figure A.13: Final meshes for both solution components, hp-FEM with anisotropic refine-
ments.

Again we also solved this benchmark using adaptive h-FEM with quadratic
elements, with anisotropic refinements enabled and disabled (adaptivity modes
H ANISO and H ISO in Hermes, respectively). The corresponding final
meshes for the anisotropic case are shown in Fig. A.14. They contain 4,961
DOF and 49,873 DOF (total of 54,834 DOF).

Figure A.14: Final meshes for both solution components, h-FEM with quadratic elements
and anisotropic refinements enabled.
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The final meshes for the isotropic case are shown in Fig. A.15. They contain
961 DOF and 81,185, DOF (total of 82,146, DOF).

Figure A.15: Final meshes for both solution components, h-FEM with quadratic elements
and isotropic refinements.

Also in this case computations were stopped when the number of DOF
exceeded 100,000. Figs. A.16 and A.17 compare all three adaptivity modes
from the point of view of DOF and CPU time convergence.

Figure A.16: DOF convergence graphs.
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Figure A.17: CPU time convergence graphs.
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