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Abstract

We propose and test a fully automatic, goal-oriented hp-adaptive strategy for elliptic problems. The method com-

bines two techniques: the standard goal-oriented adaptivity based on a simultaneous solution of a dual problem, and a

recently proposed hp-strategy based on minimizing the projection-based interpolation error of a reference solution. The

proposed strategy is illustrated with two numerical examples: Laplace equation in L-shape domain, and an axisym-

metric Maxwell problem involving radiation of a loop antenna wrapped around a metallic cylinder into a conductive

medium.
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1. Introduction

Nowadays, when a solid theoretical foundation of p- and hp-adaptive finite element methods for PDEs is
available (see e.g., [2,7,18] and others), an intensive research effort focusses on the development of auto-

matic hp-adaptive algorithms and their efficient computer implementation. Several algorithmic realizations

of automatic hp-adaptivity, based on various error estimation techniques, have been developed––see, e.g.,

[10] for a recent review. The technology of higher-order finite element methods is presented in great detail

in a recent book [19].

This paper is devoted to the extension of the original energy-driven fully automatic hp-adaptive strategy
for elliptic problems [8] to goal-oriented hp-adaptivity. The main advantages of the presented approach are

that it does not need any a priori information about singularities or steep gradients of the solution for the
construction of the initial mesh, and that it fully automatically delivers exponential convergence rates in the

full range of error level, especially in the preasymptotic range. The strategy does not use any explicit error

estimates to guide the hp-refinements––instead, an approximate error function is recovered from a suitable

reference solution, which is an approximation of the exact solution that is substantially more accurate than

the approximation on the coarse mesh. Sequence of optimal hp-meshes is obtained by minimizing
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appropriate projection-based interpolation error of the reference solution in each step. The procedure will
be discussed in more detail later.

The idea of adding the solution of the dual problem to the hp-adaptive strategy is motivated by several

practical examples, where both the energy-driven hp-adaptivity as well as the goal-oriented h-adaptivity
turned out to be incapable of achieving a required accuracy. One such problem is presented in Section 2.1.

Before we bring together the goal-oriented adaptivity and hp-adaptivity in Section 3, we briefly review

the basic principles of each of them separately in Sections 2.2 and 2.3. In Section 2.4 we describe the mesh

optimization procedure which represents the most important step of the hp-adaptive algorithm. In Section

3.4 the performance of energy-driven and goal-oriented h- and hp-adaptive versions of the automatic hp-
adaptive strategy from Section 3 is illustrated on a rather simple model elliptic problem (Laplace equation

in the L-shape domain). Finally, in Section 4 the challenging problem from Section 2.1 is solved. Con-

clusions and outlook for future work are drawn in Section 5.
2. Model problem and adaptivity

We are concerned with the solution of the standard model radiation problem relevant to drilling tech-
nologies, [11]. The problem is illustrated in Fig. 1: a loop antenna, wrapped around an infinite metallic

cylinder, radiates into a conductive homogeneous medium.

2.1. Maxwell’s equations and FE approximations

The problem consists in solving the time-harmonic Maxwell�s equations,
2D computational domain

axis of symmetry

metallic mandrel

material interfaces

emitting antenna (modelled by boundary condition)

receiving antenna (modelled by mesh element)

Fig. 1. Basic arrangement of the device and computational domain (with adjusted scaling in the r-direction). The actual measures are

given later in Section 4.1.
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to be satisfied in the whole space minus domain D occupied by the loop antenna, with a prescribed im-

pressed surface current on the surface of the antenna,
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We choose to model the antenna with a surface rather than volume current (Neumann boundary

condition instead of a source term) to avoid unnecessary refinements in the domain occupied by the

antenna.

The standard variational formulation reads as follows [16]Z
R3nD
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for every test function F, with E and F satisfying appropriate boundary conditions at infinity and oD
denoting the boundary of domain D occupied by the antenna. Two essential simplifications can be made:

• Due to the axisymmetry of the problem, components Er ¼ Ez ¼ 0 and E ¼ Eu ¼ Euðr; zÞ (in the sequel

we leave out the index u for tangential component of E).
• Due to the exponential decay of the solution away from the antenna, the resulting two-dimensional

problem for E can be stated in a bounded rectangular domain X shown in Fig. 1, encompassing a portion

of the metallic mandrel terminated away from r ¼ 0. The equation is accompanied with a homogeneous

Dirichlet boundary condition on the truncating boundary C.

The ultimate 2D variational problem, stated in polar coordinates ðr; zÞ reads as follows:
E ¼ 0 on CR
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(Here ds2 ¼ dr2 þ dz2).
Notice that the original Neumann boundary condition on C translates now into a Cauchy (Robin)

boundary condition,

oE
or

þ nr
n
E ¼ |xJ imp

s ; ð2:5Þ

where n ¼ ðnr; nzÞT.
The solution is required with great accuracy at the receiving antenna where the field is several orders of

magnitude weaker compared to the emitter. It turns out that this represents an essential difficulty to all

existing h- and hp-adaptive strategies. We will return to this problem in Section 4, with a suitable goal-
oriented hp-adaptive finite element method in hand. Before we present the scheme, let us briefly review the

basic principles of both goal-oriented and hp-adaptivity.

2.2. Basic principles of goal-oriented adaptivity

During the last decade, goal-oriented adaptivity for PDEs has been a topic of permanent scientific and

engineering interest, and several basic methodologies have been proposed (see e.g., [2–5,13,14,17]). In
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comparison with the adaptivity in energy norm which attempts to minimize the energy of the residual of the
approximate solution, the goal-oriented approach attempts to control concrete features of the solved

problem (quantities of interest). Goal-oriented adaptive techniques are designed to achieve precise resolu-

tion in quantities of interest with significantly less degrees of freedom than the standard adaptive schemes.

2.2.1. Quantities of interest

Very often quantities of interest can be represented as bounded linear functionals of the solution. For

example, the goal in the motivating problem from the previous section leads to a functional of the type

LðuÞ ¼
Z

Xs

uðxÞdx; ð2:6Þ

(to be shown in more detail in Section 4.1) where Xs is a subdomain of the computational domain X.

However, there are numerous quantities of interest which cannot be directly expressed in terms of bounded

linear functionals. A particularly important example is the value of the solution u at a selected point x0
in domain X. In such cases we may try to find a suitable approximation of the quantity of interest, e.g.,

LðuÞ ¼ 1

jBðx0; rÞj

Z
Bðx0;rÞ

uðxÞdx; ð2:7Þ

where Bðx0; rÞ 
 X is a ball with the center x0 and a sufficiently small radius r. Another possible approach

to pointwise values is the use of regularizing mollifiers (see e.g. [12]).

2.2.2. Overview of ideas leading to the formulation of the dual problem

• Consider a problem to find a solution u lying in a Hilbert space V and satisfying the weak formulation

bðu; vÞ ¼ f ðvÞ ð2:8Þ
for all v 2 V , b being an elliptic bilinear form defined on V � V and f 2 V 0.

• Consider the discrete problem

bðuh;p; vh;pÞ ¼ f ðvh;pÞ ð2:9Þ
for all vh;p 2 Vh;p where Vh;p 
 V is a polynomial finite element approximation of space V .

• Define the error eh;p ¼ u� uh;p and consider the residual

rh;pðvh;pÞ ¼ f ðvh;pÞ � bðuh;p; vh;pÞ: ð2:10Þ
• Relate the residual rh;p to the error in the quantity of interest, i.e. find G 2 V 00 such that

Gðrh;pÞ ¼ Lðeh;pÞ:
• By reflexivity, G can be related to an element v in the original space (influence function),

Gðrh;pÞ ¼ rh;pðvÞ ¼ f ðvÞ � bðuh;p; vÞ ¼ bðu; vÞ � bðuh;p; vÞ ¼ bðeh;p; vÞ ¼ Lðeh;pÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}; ð2:11Þ

where v is the solution to the dual problem:

• Find v 2 V such that

bðu; vÞ ¼ LðuÞ ð2:12Þ
for all u 2 V .

• Consider the discrete dual problem

bðu; vh;pÞ ¼ LðuÞ ð2:13Þ
for all it u 2 Vh;p.
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• Estimate the error in the quantity of interest by means of the errors in energy norms for both the primal

and dual problem:

jLðuÞ � Lðuh;pÞj ¼ jLðu� uh;pÞj ¼ jbðu� uh;p; vÞj

¼ jbðu� uh;p; v� vh;pÞj6C
X
K2sh;p

ku� uh;pke;Kkv� vh;pke;K : ð2:14Þ

(Standard orthogonality property for the error in the solution was used.)

2.3. Brief review of hp-adaptivity

The hp-version of the finite element method combines the adaptivity in h (spatial refinements) with the

adaptivity in p (variation of the degree of polynomial approximation in finite elements) in a unique way.

The basic advantage with respect to other h- or p- only adaptive schemes is that the method achieves an

exponential convergence in the energy norm for linear elliptic boundary value problems with possibly

singular solutions. In other words, as opposed to h- and p-methods, the simultaneous refinements in both h
and p allow to concentrate the degrees of freedom at singularities in a way which is sufficient to control
them numerically. Such singularities are natural for domains with reentrant corners, for points on the

boundary where the boundary conditions change their type, and intersections of material interfaces. Their

efficient resolution is crucial in many practical problems arizing in the engineering practice.

Nowadays, the theory of the hp-version of the finite element method is well-established and founded on

solid results mostly due to the efforts of Babu�ska and coworkers. However, the practical realization of fully

automatic and robust 3D hp-adaptive algorithms still presents many serious difficulties mainly due to

excessive programming complexity. We refer to [6,8,15] and references therein.

2.4. Mesh optimization procedure for energy-driven hp-adaptivity

An adaptive finite element strategy is usually based on some information about the local approximation

error that decides where the finite element mesh is to be refined. Most approaches are based on the eval-

uation of error estimators of various kinds on each mesh element. This seems to be sufficient for schemes

which are adaptive either in h or in p only, because it is only the magnitude of the error in an element which

decides about the refinement of the element. However, the hp-adaptivity brings more choices for an element

to be refined: there is the possibility to perform either a p-refinement only, or to split the element spatially
with various distributions of the polynomial degree p for its sons. Obviously, we must be critical when

deciding between various refinement possibilities, which means that we must take into account both the

invested number of degrees of freedom and the profit which the various refinement options bring. Such

refinement options for a mesh element are called competitive element refinements.

An original approach based on the maximization of the decrease rate for the local hp-interpolation error

with respect to a reference solution was presented in [15], A reference solution uref is an approximation of

the exact solution u which is closer to the exact solution than the original approximation uh;p.
Hence, the difference uref � uh;p is capable of delivering useful information not only about the magnitude

but also about the concrete shape of the error eh;p. The reference function can be obtained in several dif-

ferent ways (see e.g., [15] where for this purpose Babu�ska�s extraction formulas were used).

2.4.1. Reference solutions on globally refined grids

In [8], reference solutions are computed as approximate solutions corresponding to hp-grids obtained by

a uniform h- and p-refinement such that h! h=2 and p ! p þ 1 for all mesh elements. By uh=2;pþ1 we denote
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the fine grid solution. The reader may object that the computation of uh=2;pþ1 becomes prohibitive in 3D.
However, one must not forget that hp-adaptivity is designed to reduce the number of degrees of freedom in

3D by orders of magnitude with respect to, e.g., standard h-adaptive schemes. Numerical experience shows

that this is a realistic expectation, which we hope to confirm by large 3D computations in the near future.

Let us remark that for h-adaptivity the hp-strategy reduces uh=2;pþ1 to uh=2 (i.e. the reference solution

is constructed by uniform h-refinement only). This is sufficient as. in this case, the variation in p is not

involved in the mesh optimization process.

2.4.2. Error as the difference between the reference solution and its interpolant

It is our aim to minimize the error in energy norm

kek2e ¼ ku� uh;pk2e : ð2:15Þ
In the language of element contributions we can write

ku� uh;pk2e ¼
X
K2sh;p

ku� uh;pk2e;K ; ð2:16Þ

where sh;p stands for the hp-mesh and K for a mesh element. Obviously the minimization of ku� uh;pk2e;K
cannot be done locally. But, asymptotically, we can achieve the same goal by minimizing

kuref � Ph;purefk2e;K ð2:17Þ

on all K 2 sh;p where Ph;p is a suitable projection-based interpolation.

Let us emphasize that the replacement of uh;p with Ph;puref is essential for the adaptive strategy, since

it opens the possibility for minimization of the approximate error bound (2.17) by suitable adjustments of

the hp-mesh locally, one element at a time. The same approach will be used later in the goal-oriented case, in

the estimate (3.22).

2.4.3. Projection-based interpolation

Finite element interpolants can be constructed very easily for nodal elements whose degrees of freedom

are typically defined on large sets of functions (i.e. both inside and outside the local finite element poly-

nomial space). The situation is completely different for elements whose degrees of freedom are defined via

hierarchic shape functions, since they are defined in the local finite element space only. Hence, for hierarchic

elements, the interpolation must be combined with suitable projection onto the finite element space. The

definition of suitable projection-based interpolation operators is not trivial (see e.g., [7]). The operators
must satisfy the following conditions:

• The interpolant must lie in the finite element space.

• The interpolation must be local, i.e. it must be capable of projecting a function onto an element using

information accessible from inside of the element only.

• The interpolation must be optimal, i.e. deliver the same convergence rates as the global approximation.

The projection-based interpolation Ph;p (of reference solution uref ), analyzed in [7], consists of three
steps:

• Evaluation of uref at mesh vertices and its extension to the element interior––resulting in (bi)linear vertex

interpolant denoted by u1.
• Projection of uref � u1 in H 1

0 on edges and its extension to the element interior––resulting in edge inter-

polant denoted by u2: this step involves a discrete minimization problem (¼ solution of a system of linear

equations) on each edge.
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• Projection of uref � u1 � u2 on the element bubble functions; this step involves one solution of a system of

linear equations for each element.

With a suitable projection-based interpolation in hand, one step of the mesh optimization looks as

follows (we refer to [8] for the full description of the algorithm):

(1) Perform the global hp-refinement and compute fine mesh solution uh=2;pþ1.

(2) Compute elementwise error kuh=2;pþ1 � uh;pk2e;K for all T 2 sh;p.
(3) Determine the element isotropy flags (¼ determine if the element is going to be refined isotropically or

anisotropically).

(4) Determine optimal refinement for each edge in the mesh sh;p using competitive refinements.

(5) Determine the maximum edge error decrease rate and identify all edges with error decrease equal at

least to (e.g.) one third of the maximal one; those edges are going to be refined. Let us remark that this

concrete choice is based on our numerical experience––the algorithm will work with 1/4, 1/2 and other

values as well. It is extremely difficult to investigate the optimality of this value rigorously.

(6) Use the information about edge h-refinements and the element isotropy flags to decide about h-refine-
ments for all elements. After this step, the topology of the new mesh is determined.

(7) Determine optimal orders of approximation for all element interiors monitoring the error decrease rate.

(8) Enforce the minimum rule to all edges in the mesh: order of approximation for an edge must be equal

to the minimum of orders for the adjacent elements.

The hp-adaptive strategy starts with an initial mesh and repeats the mesh-optimization procedure until

a sufficient accuracy of the solution (measured in the energy norm of the difference of uh=2;pþ1 � uh;p) is
reached. The reader may notice that the stopping criterion is the only reason for the computation of the
approximation uh;p on the coarse grid––uh;p is not used for the mesh optimization. The solution uh=2;pþ1 can be

used as a final result.

Let us emphasize that strategies based on reference solutions are not the only option––for example,

we refer to [1] for an alternative strategy based on monitoring local h-convergence rates.
3. Fully automatic adaptive strategies

Now we have given enough background to introduce the goal-oriented hp-adaptive strategy, which is a

general representant of a whole class of goal-oriented and energy-driven h-, p- and hp-adaptive schemes.

Notice that goal-oriented adaptivity reduces to energy-driven when the dual problem is identical to the

primal one (which, obviously, needs not be solved twice). The hp-adaptivity can be reduced to h- and

p-adaptivity by fixing either p or h, respectively. Later in this section we will mention these simplifications

for comparison purposes.

3.1. Goal-oriented hp-adaptivity

Let us start with the most general case of goal-oriented hp-adaptivity. The basic difference

between the original energy driven hp adaptive strategy from [8], and the goal-oriented approach, is that

instead of minimizing the error in the energy norm (2.15), we will minimize the error in the quantity of

interest,

kLðuh=2;pþ1Þ � Lðuh;pÞk: ð3:18Þ
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Here uh=2;pþ1 stands for the fine mesh solution corresponding to the globally refined mesh sh=2;pþ1. Replacing

the exact solution u and the (exact) dual solution v with the corresponding fine mesh solutions uh=2;pþ1,

vh=2;pþ1, respectively, we repeat now the steps discussed in Section 2.2 to arrive at the following identity,

jLðuh=2;pþ1Þ � Lðuh;pÞj ¼ bðuh=2;pþ1 � uh;p; vh=2;pþ1 � vh;pÞ: ð3:19Þ

We assume that the bilinear form bðu; vÞ can be split into a bilinear, positive definite part aðu; vÞ and
a compact perturbation cðu; vÞ; see [9],

bðu; vÞ ¼ aðu; vÞ þ cðu; vÞ: ð3:20Þ
Recall that in (3.19) uh=2;pþ1 and uh;p are fine and coarse grid solution to the original problem, vh=2;pþ1

is the fine grid solution of the dual problem. and vh;p stands for any coarse grid test function. We make

now the following assumptions.

(1) We select for vh;pthe projection-based interpolant of fine mesh dual problem solution,

Lðuh=2;pþ1Þ � Lðuh;pÞ ¼ bðuh=2;pþ1 � Puh=2;pþ1; vh=2;pþ1 � Pvh=2;pþ1Þ
bðPuh=2;pþ1 � uh;p; vh=2;pþ1 � Pvh=2;pþ1Þ: ð3:21Þ

(2) We neglect the second term corresponding to the contribution of the difference between the coarse grid
interpolant Puh=2;pþ1 and coarse grid solution.

This leads to the estimate

jLðuh=2;pþ1Þ � Lðuh;pÞj
6

X
K2sh;p

jbKðuh=2;pþ1 � Puh=2;pþ1; vh=2;pþ1 � Pvh=2;pþ1Þj

6

X
K

jaKðuh=2;pþ1

�
� Puh=2;pþ1; vh=2;pþ1 � Pvh=2;pþ1Þj þ jcKðuh=2;pþ1 � Puh=2;pþ1; vh=2;pþ1 � Pvh=2;pþ1Þj

�
6

X
K

ð1þMKÞkuh=2;pþ1 � Puh=2;pþ1ke;Kkvh=2;pþ1 � Pvh=2;pþ1ke;K : ð3:22Þ

Here bK , aK , cK denote element contributions to global forms b, a, c respectively and MK stands for the

continuity constant of bilinear form cK ,

jcKðuh=2;pþ1 � Puh=2;pþ1; vh=2pþ1 � Pvh=2;pþ1Þj6MKkuh=2;pþ1 � Puh=2;pþ1ke;Kkvh=2;pþ1 � Pvh=2;pþ1ke;K :
ð3:23Þ

(3) Since the constant MK corresponds to a compact perturbation of an elliptic operator, we expect it to be
asymptotically (both in h and p) converging to zero, and we shall neglect it in our estimate.

This leads to the final estimate,

jLðuh=2;pþ1Þ � Lðuh;pÞj6
X
K2sh;p

kuref � Ph;purefke;Kkvref � Ph;pvrefke;K ; ð3:24Þ

which is approximate in sense of neglecting the difference between fine mesh solution and fine mesh

solution interpolant in (1). Consequently, instead of minimizing the projection based interpolation error,

kuh=2;pþ1 � Ph;puh=2;pþ1k2 ¼
X
K

kuh=2;pþ1 � Ph;puh=2;pþ1k2e;K ; ð3:25Þ

we shall modify the original hp strategy to minimize now estimate (3.24). The steps of the algorithm

are analogous to those discussed in Section 2.4.
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(1) Compute element contributions to estimate (3.24),

kuh=2;pþ1 � Ph;puh=2;pþ1ke;Kkvh=2;pþ1 � Ph;pvh=2;pþ1ke;K ; ð3:26Þ

for all T 2 sh;p.
(2) Determine the element isotropy flags. An element is declared to be a candidate for an anisotropic refine-

ment if both differences uh=2;pþ1 � uh;p and vh=2;pþ1 � vh;p represent the same anisotropic behavior.

(3) Determine optimal refinement for each edge e in the current mesh sh;p comparing competitive refine-

ments. Use product of the interpolation errors for the primal and dual problems in place of the inter-

polation error of the fine mesh solution,

kuh=2;pþ1 � Ph;puh=2;pþ1k
H

1
2
00
ðeÞ
kvh=2;pþ1 � Ph;pvh=2;pþ1k

H
1
2
00
ðeÞ
: ð3:27Þ

The H
1
2

00ðeÞ-norm on the edge e is defined in a standard way as the H 1-seminorm of a harmonic

extension into element interior (see e.g., [7]).

(4) Determine the maximum edge error decrease rate and identify all edges with error decrease greater

or equal than one third of the maximal one; those edges are going to be refined.

(5) Use the information about edge h-refinements and the element isotropy flags to decide about h-refine-
ments for all elements.

(6) Determine optimal orders of approximation for all element interiors monitoring the decrease rate of the

product of the element interpolation errors (3.26).

(7) Enforce the minimum rule for all edges in the mesh: order of approximation for an edge must be equal

to the minimum of orders for the adjacent elements.

With the one step minimization strategy described above, the ultimate goal-oriented hp strategy looks as

follows.

(1) Initiate k :¼ 0.

(2) Consider mesh skh;p and corresponding space of functions V kh;p.
(3) Solve primal problem on the coarse mesh: bðukh;p; vÞ ¼ f ðvÞ, for all v 2 V kh;p.
(4) Solve dual problem on the coarse mesh: bðu; vkh;pÞ ¼ LðuÞ, for all u 2 V kh;p.
(5) Construct globally hp-refined mesh skh=2;pþ1 and the corresponding finite element space V kh=2;pþ1.

(6) Solve primal problem on the fine mesh: bðukh=2;pþ1; vÞ ¼ f ðvÞ, for all v 2 V kh=2;pþ1.

(7) Solve dual problem on the fine mesh: bðu; vkh=2;pþ1Þ ¼ LðuÞ, for all u 2 V kh=2;pþ1.

(8) Compute estimate (3.24). If the estimated difference (relative to fine mesh goal Lðuh=2;pþ1Þ) is within the

prescribed tolerance, quit.

(9) Apply the mesh optimization procedure described above to construct next optimal mesh skþ1
h;p .
Remark

(1) Similarly as in [8], we replace the H
1
2

00ðeÞ norm with a weighted H 1
0 ðeÞ norm, see [8] for details.

(2) Notice that the stopping criterion is based on the actual difference of the fine and coarse mesh goals and
not its estimate.

3.2. Energy driven h-adaptive algorithm

One of the goals of the presented work is to gain some experience with how much we can gain using hp-
adaptivity when compared with h-adaptivity based on quadratic elements. The choice of quadratic elements
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seems to be fair as, in general, they deliver vastly superior results to linear elements, and their imple-
mentation is much simpler than, say, cubic elements. Quadratic element, for instance, have only one d.o.f.

(scalar case) per edge, face, and element interior (no orientation needed !) and present a good balance

between accuracy and complexity of the corresponding implementation.

First let us discuss a simplification of the goal-oriented hp-adaptive procedure from the previous section

leading to energy-driven h-adaptivity. Given a coarse mesh skh and corresponding finite element space V kh ,
we construct the next coarse mesh skþ1

h as follows:

(1) Solve primal problem on the coarse mesh: bðukh; vÞ ¼ f ðvÞ for all v 2 V kh .
(2) Construct globally h-refined mesh skh=2 and the corresponding FE space V kh=2.
(3) Solve primal problem on the fine mesh: bðukh=2; vÞ ¼ f ðvÞ, for all v 2 V kh=2.
(4) Compute the difference between the coarse and fine mesh solutions,

kukh=2 � ukhk
2

e ¼
X
K2skh

kukh=2 � ukhk
2

e;K :

When computing the element contributions, determine the anisotropy flags for the elements.
(5) Quit if the error estimate is below the prescribed tolerance.

(6) Determine the maximum element contribution to the error estimate, and refine all elements that con-

tribute with error within one third of the maximum one. Use the isotropy flags to decide between

the isotropic and anisotropic refinements.

3.3. Goal-driven h-adaptive algorithm

Given a coarse mesh skh and corresponding finite element space V kh , we construct the next coarse mesh
skþ1
h as follows:

(1) Solve primal problem on the coarse mesh: bðukh; vÞ ¼ f ðvÞ, for all v 2 V kh .
(2) Solve dual problem on the coarse mesh: bðu; vkhÞ ¼ LðuÞ, for all u 2 V kh .
(3) Construct globally h-refined mesh skh=2 and the corresponding FE space V kh=2.
(4) Solve primal problem on the fine mesh: bðukh=2; vÞ ¼ f ðvÞ, for all v 2 V kh=2.
(5) Solve dual problem on the fine mesh: bðu; vkh=2Þ ¼ LðuÞ, for all u 2 V kh=2.
(6) Compute the estimate of the difference in goal for the coarse and fine mesh solutions,

jLðukh=2Þ � LðukhÞjb
X
K2skh

kukh=2 � ukhke;Kkvkh=2 � vkhke;K :

When computing the element contributions, determine the anisotropy flags for the elements.

(7) Quit if the difference in goals for the fine and coarse mesh solutions is below the prescribed tolerance.

(8) Determine the maximum element contribution to the error estimate, and refine all elements that con-

tribute with error within one third of the maximum one. Use the isotropy flags to decide between

the isotropic and anisotropic refinements.
3.4. Numerical illustration: Laplace equation

We consider the standard L-shape X domain problem, see [8].

We solve the Laplace equation

�Du ¼ 0 ð3:28Þ
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Fig. 2. Geometry and initial mesh.
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in X, with Dirichlet boundary conditions uðxÞ ¼ uðxÞ for all x 2 oX. Function u is chosen to be compatible

with the harmonic function

uðx1; x2Þ ¼ r2=3 sinð2h=3þ p=3Þ; ð3:29Þ
where ðr; hÞ are standard polar coordinates. Derivatives of the solution are singular at origin ð0; 0Þ (Fig. 2).

The goal of our computation is the average value of the solution u over a small neighborhood Xs of point
P1 ¼ ð�0:5; 0:5Þ, defined as follows: consider the mesh edges ej; j ¼ 1; 2; . . . ; 6, starting at P1. On each of

them construct a point Qj whose distance from P1 is

jQj � P1j ¼
jejj
2Ns

; ð3:30Þ

Ns ¼ 5. The neighborhood Xs is defined as the convex envelope of points Q1;Q2; . . . ;Q6, as illustrated in

Fig. 3.
P
1

s
Ω

Fig. 3. The neighborhood Xs of the point P1 (the illustration roughly corresponds to Ns ¼ 2).
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Let us mention that this concrete choice of Xs has been motivated by the ease of computer implemen-
tation of the numerical quadrature over Xs only, and that Xs does not change during the adaptive pro-

cedure.

Figs. 4–7 show meshes which have been obtained to yield a relative error in the quantity of interest to

be less than 10�5. Scale on the right hand side indicates the order of polynomial approximation, starting

with p ¼ 1.

Fig. 8 shows the history of the relative error in goal for all four tested approaches. The x-axis represents
the number of degrees of freedom.
Fig. 4. Energy-based h-adaptivity. Mesh after 18 h-refinements (all elements are second-order), number of DOF ¼ 3114.

Fig. 5. Goal-oriented h-adaptivity. Mesh after 17 h-refinements (all elements are second-order), number of DOF ¼ 2448.



Fig. 6. Energy-based hp-adaptivity. Mesh after 15 hp-refinements, number of DOF ¼ 1366.

Fig. 7. Goal-oriented hp-adaptivity. Mesh after 10 hp-refinements, number of DOF ¼ 803.
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4. Application to the radiation problem

Finally we return to the motivating problem introduced in Section 2.1.

4.1. Numerical setting

We shall describe now the geometry of the domain, initial mesh and the quantity of interest in more

detail. All values below are given in meters (some of them being converted from inches).
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Fig. 8. Relative error wrt. the exact solution in goal.
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4.1.1. Geometry of domain and initial mesh

Besides the emitting antenna, a receiving antenna, occupying another subdomain D1 
 X is placed into

the computational domain. Both antennas have identical form of a single axisymmetric ring of radius

ra ¼ 0:03048. The cross-section of the antennas is circular with radius rc ¼ 0:000718. Midpoints of the
emitting and receiving antenna in the axisymmetric geometry are P0 ¼ ð0:03048; 0Þ and P1 ¼ ð0:03048; 0:5Þ,
respectively. The computational domain with the initial mesh is shown in Fig. 9.

Grid points in the r- and z-direction are listed in Tables 1 and 2, respectively.

We have to impose certain geometrical gradation of the mesh towards the antennas in order to minimize

the initial mesh error, but notice that both very large and very long thin elements are left in the mesh.

Certain optimization of the initial mesh is required since it significantly influences the convergence of the

adaptive scheme. However, it is our aim to reduce the work related to the generation of initial meshes

as much as possible.
Fig. 9. Geometry and initial mesh on X.



Table 1

Grid points in the r-direction

0.02 0.0254 0.029214 0.030226 0.030734

0.031746 0.03738 0.075042 0.326024 2.0

Table 2

Grid points in the z-direction

)2.0 )0.500254 )0.499746 )0.044248 )0.007003
)0.001266 )0.000254 0.000254 0.001266 0.007003

0.044248 0.455752 0.492997 0.498734 0.499746

0.500254 0.501266 0.507003 0.544248 2.0
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Curvilinear elements are used to model both antennas as true circles. This turned out to be necessary in

order to avoid non-physical singularities and the use of too many degrees of freedom necessary to resolve

them.

Recall that we model the emitting antenna by means of a Cauchy boundary condition for E in order to

avoid refinements in its interior. Hence, our computational domain X is obtained after subtracting the

emitting antenna (i.e. circle with midpoint P0 and radius rc) from the rectangle ½0:02; 2:0� � ½�2:0; 2:0�. The
subdomain Xm 
 X, Xm ¼ ½0:02; 0:0254� � ½�2:0; 2:0� represents a metallic mandrel with the material

properties l ¼ 1, r ¼ 107, � ¼ 1. The same material properties are chosen also for the receiving antenna.
Fig. 10. Energy-based h-adaptivity (above) and goal-oriented h-adaptivity (below), zoom ¼ 1000 towards the emitting antenna.
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The rest of X represents mud and soil with the material properties l ¼ 1, r ¼ 1, � ¼ 1. Here l stands for the
permeability, r for the electrical conductivity and � for the dielectric constant.

The frequency and angular frequency of the harmonic field have the values f ¼ 2� 106, x ¼ 2pf .

4.1.2. Goal of computation

Our objective here is to predict the value of

NðEÞ ¼ 20 log10

Z
D1

Erdrdz; ð4:31Þ

representing a measure of the electromagnetic force at the receiving antenna in decibels (dB). Hence the

goal is to find an approximation Eh;p of E such that

jNðEh;pÞ � NðEÞj6 TOL; ð4:32Þ
where E is the (unknown) exact solution. We look for a suitable linear functional of interest for the dual

problem approximating NðEÞ. Assuming that the valueZ
BðP1;rcÞ

Eh;prdrdz; ð4:33Þ

corresponding to the approximate solution will be close toZ
BðP1;rcÞ

Erdrdz ð4:34Þ
Fig. 11. Energy-based h-adaptivity (above) and goal-oriented h-adaptivity (below), zoom ¼ 1000 towards the receiving antenna.
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motivates us to approximate

jNðEh;pÞ � NðEÞj ¼ 20 log10

R
BðP1;rcÞ Eh;prdrdzR
BðP1;rcÞ Erdrdz

�����
����� � 20

ln 10

R
BðP1;rcÞ Eh;prdrdz�

R
BðP1;rcÞ ErdrdzR

BðP1;rcÞ Erdrdz

�����
�����: ð4:35Þ

We see that due to the �linearity� of function log10 ðyÞ at y ¼ 1, the minimization of the error in NðEÞ
translates into the minimization of the error in the quantity

LðEÞ ¼
Z
BðP1;rcÞ

Erdrdz: ð4:36Þ

Thus, the goal of our computation is the integral of Er over the receiving antenna BðP1; rcÞ. The constant

20/ln(10) is used in the stopping criterion for the adaptive algorithm only (Figs. 10–13).

4.2. h-adaptivity results

Let us show a few results (resulting optimal meshes in the neighborhood of the antennas) of both the
energy-based and goal-oriented h-adaptive schemes. All schemes start from the same coarse initial mesh

consisting of second-order elements. Similarly as in Section 3.4. the scale on the right-hand side represents

the order of polynomial approximation. Energy-based and goal-oriented h-adaptivity are performed using

second order elements only.
Fig. 12. Energy-based hp-adaptivity (above) and goal-oriented hp-adaptivity (below), zoom ¼ 1000 towards the emitting antenna.
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Fig. 14 shows the history of the relative error in goal (i.e. in the non-linear quantity (4.31)) for all four
tested approaches. The unknown exact solution to the radiation problem is replaced by the corresponding

fine mesh solution for the error evaluation. The x-axis represents the number of degrees of freedom.
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Fig. 14. Relative error in goal (h-adaptivity with quadratic elements only, hp-adaptivity with initially quadratic elements).

Fig. 13. Energy-based hp-adaptivity (above) and goal-oriented hp-adaptivity (below), zoom ¼ 1000 towards the receiving antenna.
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The presented results show a dramatic difference between the energy and goal driven adaptivity. The
corresponding meshes are essentially different, and the goal-oriented adaptivity delivers results that are

at least an order of magnitude better.

Concerning the difference between the goal-driven h- and hp-adaptive schemes, we can risk a statement

that, within the investigated range of problem size, hp-adaptivity delivers results that are an order of

magnitude better than those produced by h-adaptivity only.

For all investigated strategies, the (estimated or computed) error in goal does not decrease monotoni-

cally, especially for energy driven schemes.

Finally, we would like to emphasize that for the antenna problem, that has motivated this research
project, the goal-oriented hp-adaptive scheme has delivered an outstanding 1/10 of a percent accuracy (on

the decibel scale) which seems to be more than satisfactory from the practical point of view.
5. Conclusions

The aim of this study was to bring together the advantages of two powerful tools of numerical mathe-

matics, the hp-adaptivity and the goal-oriented adaptivity, into a fully automatic goal-oriented hp-adaptive
strategy for elliptic problems. We have extended an existing fully automatic h-adaptive strategy in energy

norm by introducing the solution of the dual problem and applying it to the mesh optimization algorithm

based on the minimization of the projection-based hp-interpolation error of reference solutions to both the

primal and the dual problems.

The numerical results presented in the last two sections demonstrate the advantages of this approach

with respect to both the goal-oriented h-adaptive strategy and hp-adaptive strategy in energy norm.

However, as often the case with 2D computations, this work stands as merely a proof of concept. The

ultimate challenge we are heading for is the fully automatic goal-oriented hp-adaptivity in three spatial
dimensions, on which we hope to report soon.
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